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Abstract
Background: Statins effectively lower blood cholesterol and the risk of cardiovascular death.
Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to
these compounds. Since macrophages participate in several vascular pathologies, we examined the
effect of statin treatment on the survival and differentiation of primary human monocytes.

Methods: Peripheral blood mononuclear cells (PBMCs) from healthy individuals were cultured in
the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and
flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or
absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA.

Results: Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis,
which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the
highest mevastatin dose used (10 microM), apoptosis occurred only after 24 h of culture, possibly
reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast
majority (>50%) of monocytes were undergoing apoptosis. Stimulation with LPS revealed that
mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated
cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone
prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to
LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation.

Conclusions: Our findings indicate that statins arrest the functional differentiation of monocytes
into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the
vasculoprotective properties of HMG-CoA reductase inhibitors.

Background
Advanced coronary artery disease (CAD) is currently a
leading cause of morbidity and mortality in the western

world and the most common indication for heart trans-
plantation. Even after successful transplantation, allograft
vasculopathy affects as many as 60% of cardiac grafts
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within one year [1] and is the principal cause of late graft
loss. While their natural histories differ, CAD and allograft
vasculopathy share certain features of their pathogenesis
and histopathology. Prominent among these features is
the recruitment and retention of peripheral blood mono-
cytes in the vascular wall, an event that is thought to trig-
ger the formation of vascular lesions.

Monocyte-derived macrophages play a central role in the
pathogenesis of both native atherosclerosis and allograft
vasculopathy [2,3]. Macrophages are an integral cellular
component of the atherosclerotic plaque where they func-
tion to sequester lipids, giving rise to "foam cells". The
release of extracellular matrix-degrading proteases by
these cells, combined with their pro-apoptotic effect on
adjacent vascular smooth muscle cells [4], are thought to
destabilise the plaque, progressively leading to rupture.
Furthermore, atherosclerotic plaque macrophages pro-
mote local coagulation by releasing prothrombotic medi-
ators such as tissue factor. Similarly, though their precise
role remains poorly defined, macrophages abound in the
neointimal lesions associated with allograft vasculopathy
and formation of these lesions is defective in macrophage-
deficient mice [3]. Moreover, treatments that have proven
effective in reducing neointimal lesion formation also
reduced the macrophage burden of the lesion [5,6]. It
seems likely, therefore, that macrophage turnover in the
vascular wall may influence the rate of progression of
both native atherosclerosis and allograft vasculopathy.

Statins are highly efficacious in controlling hyperlipidae-
mia and reducing the risk of acute coronary events and
cardiovascular death [7]. The biological activity of statins
stems from their chemical structure, which resembles that
of mevalonic acid. Statins suppress de novo cholesterol
biosynthesis by inhibiting HMG-CoA reductase, the rate-
limiting enzyme of the mevalonate pathway [8]. Amaz-
ingly, statin therapy is well tolerated with few major
adverse effects, usually attributable to metabolic interac-
tions with other drugs [9].

Early animal studies suggested that, in addition to its anti-
atherosclerotic effect, statin treatment might also attenu-
ate the development of allograft vasculopathy [10,11].
The first evidence for an association of post-transplant sta-
tin treatment with reduced incidence and progression of
allograft vasculopathy in human cardiac allograft recipi-
ents came from a prospective study by Kobashigawa et al
[12]. This finding was subsequently corroborated by oth-
ers [13] and spurred interest in characterising the vasculo-
protective effects of statins [14,15].

Statins are now known to have multiple effects on native
cellular components of the vascular wall as well as on
monocytes / macrophages [16]. Given the involvement of

macrophages in CAD and allograft vasculopathy, one
plausible mechanism through which statins exert their
vasculoprotective actions could be the induction of mac-
rophage apoptosis. When grown in vitro monocytes differ-
entiate into macrophages, a phenotypic transition
heralded by down-regulation of the IL-1β response to
lipopolysaccharide (LPS) [17,18]. Using this simple
model, we explored the hypothesis that mevastatin treat-
ment arrests monocyte-to-macrophage differentiation
and, instead, steers these cells into apoptosis.

Methods
All aqueous solutions were prepared using endotoxin-free
water from a MilliQ Biocel purification unit (Millipore,
Bedford MA) and filter-sterilised. Reagents were obtained
from Sigma (St Louis MO) unless otherwise indicated.

Subjects and materials
Peripheral blood mononuclear cells (PBMCs) obtained
by venipuncture from six individuals were used in this
study. All subjects were healthy volunteers recruited using
procedures and documentation approved by the Cam-
bridge Local Ethics Committee.

Mevastatin was reconstituted to 4 mM in dimethyl sulfox-
ide (DMSO), stored at 4°C in the dark and added to cell
cultures at a final concentration of 10 µM. Mevalonolac-
tone (ICN Biochemicals, Cleveland OH), a membrane-
permeable internal ester of mevalonate that is hydrolysed
by cytoplasmic esterases, was reconstituted to 40 mM in
DMSO, stored at 4°C in the dark and used at a final con-
centration of 100 µM. Lipopolysaccharide (LPS; from E
coli strain 055:B5) was dissolved in phosphate-buffered
saline (PBS) and used at 5 µg/mL final concentration.
Recombinant human gamma-interferon (γIFN; Pepro-
tech, London UK) was reconstituted in PBS and used at 50
ng/mL (1000 U/mL) final concentration.

PBMC purification and handling
Blood was processed immediately after phlebotomy.
PBMCs were purified by centrifugation over Percoll (AP
Biotech, Piscataway NJ), spin-washed once with cold
modified Hanks' Balanced Salt Solution (containing 5
mM Na4EDTA, 1% BSA) and once with cold PBS at 250 ×
g for 5 min, resuspended in PBS and counted. The mono-
cytic (CD33+hi) content of the PBMC population and the
extent of neutrophil contamination were quantified by
immunofluorescent staining of 5 × 105 cells with an anti-
human CD33-FITC MAb (clone WM53; Serotec, Oxford
UK) and analysis by flow cytometry. All PBMC prepara-
tions used in this study were essentially neutrophil-free
(neutrophil content <0.5%).

The remaining PBMCs were resuspended in RPMI 1640
medium and recounted. Aliquots of this suspension,
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calculated to contain 2.5 × 105 CD33+hi cells each, were
seeded in individual wells of a 24-well tissue culture plate.
Each well contained 1 mL of pre-warmed complete
growth medium (RPMI 1640 supplemented with 10%
FCS, 2 mM L-glutamine, 50 U/mL penicillin and 50 µg/
mL streptomycin). Cell culture was performed at 37°C /
5% CO2 in a humidified incubator.

Analysis of apoptotic monocytes
Apoptotic cells were identified by double supravital stain-
ing with recombinant FITC-conjugated annexin V and
propidium iodide (PI) [19], using the TACS Apoptosis
Detection kit (R&D Systems, Minneapolis MN) according
to the manufacturer's instructions. All cultures were per-
formed and assayed in triplicate. Flow cytometric analysis
was performed immediately after supravital staining. For
each sample, 2,500 events were obtained in the monocyte
region and gated onto a fluorescence dot plot, where the
fraction of total annexin V-positive cells was determined.
Common settings for forward / side scatter, fluorescence
gains, colour compensation and fluorescence threshold
were used throughout the study. These were determined
by assaying unstained and single-stained cells (with PI or
annexin V alone).

Measurement of cytokine release
The concentrations of IL-1β and IL-1Ra in cell culture
supernatants were determined by ELISA using human
Cytoset™ kits (BioSource, Camarillo CA) according to the
manufacturer's instructions. Cell culture supernatants
were depleted of residual cells and cell debris by centrifu-
gation, collected in microtubes and stored at -20°C prior
to the assay. Each supernatant was thawed once and both
cytokines were assayed in parallel. All standards, samples
and controls were assayed in duplicate.

Statistical analysis
Data were compiled and analysed using MicroSoft Excel™
(MicroSoft, Redmont WA). Descriptive statistics (mean;
standard deviation; standard error of mean) were calcu-
lated for each treatment group. For both the apoptosis and
cytokine release studies, group means were compared
using the appropriate version of Student's unpaired t-test,
as determined by the F-test for equality of variances. Test
results are reported as two-tailed p values, where p < 0.05
was considered statistically significant. Summary data are
reported as mean +/- SEM.

Results
Mevastatin-treated differentiating human monocytes 
undergo delayed apoptosis
Prolonged mevastatin treatment was associated with mas-
sive apoptosis of cultured human peripheral blood mono-
cytes, but not lymphocytes (figure 1). Incubation with
mevastatin for 24 h did not compromise monocyte viabil-

ity when compared to untreated or vehicle-treated cell cul-
tures. However, a 48-h treatment with mevastatin resulted
in the appearance of a large apoptotic monocyte popula-
tion, as defined by light scatter criteria (granular cells of
diminishing size) and annexin V-positive staining. At this
time-point, 27.5 +/-1.8% of mevastatin-treated mono-
cytes were undergoing apoptosis compared with 8.8 +/-
1.6% of vehicle-treated monocytes (p = 0.001; figure 2).

Monocyte viability was severely compromised after 72 h
of mevastatin treatment, when 53.0 +/- 3.9% of mono-
cytes were undergoing apoptosis compared to 12.9 +/-
1.3% of vehicle-treated monocytes (p = 0.0006; figure 2).
Dose-response experiments showed that mevastatin trig-
gered apoptosis at concentrations >1 µM (EC50 ~ 2.5 µM
at 72 h; data not shown) and that this effect was already
maximal at 5 µM. Consistent with 48-h time-point obser-
vations, flow cytometric analysis revealed relatively few
annexin V single-positive monocytes (<18% of apoptotic
population), indicating rapid progression to apoptosis. In
contrast to the lymphocyte population, the size of which
did not vary significantly over time, viable monocyte
numbers had plummeted after 72 h of treatment with
mevastatin (figure 1C).

Supplementation of mevastatin-treated cultures with
mevalonolactone attenuated monocyte apoptosis by
83.1% (range 72.6–99.3%; p = 0.01) and 77.4% (range
56.4–90.9%; p = 0.01) at 48 h and 72 h, respectively (fig-
ure 2).

Mevastatin treatment arrests monocyte differentiation in 
vitro
Interleukin-1β release after LPS stimulation is suppressed
early during monocyte-to-macrophage differentiation in
vitro and in vivo. Continuous mevastatin treatment of non-
stimulated human PBMCs for 48 h did not affect constitu-
tive IL-1β output (47.7 +/- 13.6 vs 45.1 +/- 9.0 pg/mL in
vehicle-treated cultures). However, when LPS was added
at 24 h mevastatin-treated cells released approximately
40-fold more IL-1β compared to vehicle-treated cells
(15,559.1 +/- 5,518 vs 389.2 +/- 163 pg/mL; p = 0.05), a
level comparable to that obtained with freshly harvested,
undifferentiated monocytes (figure 3A).

Gamma-interferon is known to potentiate induction of
IL-1β by LPS [20]. In this study, incubation of vehicle-
treated monocytes with γIFN for 6 h prior to addition of
LPS increased IL-1β output approximately 4-fold. Under
the same conditions, mevastatin-treated monocytes
released approximately 11-fold more IL-1β than vehicle-
treated cells (18,423.4 +/- 4,152 vs 1,649.7 +/- 338.4 pg/
mL; p = 0.03), although the enhancing effect of γIFN was
no longer apparent.
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Mevastatin-treated differentiating monocytes are particularly susceptible to apoptosisFigure 1
Mevastatin-treated differentiating monocytes are particularly susceptible to apoptosis. After 24 h of statin treatment mono-
cytes still constituted a single, viable cell population (panel A, black arrow). By 48 h this viable monocytic population had 
decreased in size and a second population of smaller, annexin V-positive cells had appeared (B). By 72 h the majority of mono-
cytes were undergoing apoptosis (C). Conversely, peripheral blood lymphocytes (white arrow) remained largely viable 
throughout the observation period. Results shown here are representative of 18 experiments (three per individual).
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Inclusion of mevalonolactone in the growth medium
completely prevented the mevastatin-induced blockade of
monocyte differentiation, both in the presence and in the
absence of γIFN (p = 0.02 and 0.05, respectively; figure
3A). In fact, mevalonolactone supplementation further
suppressed IL-1β release below that of vehicle-treated
monocytes. When LPS was used alone, mevalonolactone-
treated monocytes released 62% less IL-1β than vehicle-
treated cells (147.7 +/- 38.3 vs 389.2 +/- 163.0 pg/mL; p =
0.25). When LPS was used in combination with γIFN,
mevalonolactone suppressed IL-1β release by 81.5%,
compared to vehicle treatment (305.2 +/- 65.3 vs 1,649.7
+/- 338.4 pg/mL; p = 0.03).

Mevastatin suppresses LPS-induced IL-1Ra release from 
differentiating monocytes
The interleukin-1 receptor antagonist is an important
endogenous regulator of IL-1. IL-1Ra inducibility by LPS
is also progressively down-regulated during monocyte-to-
macrophage differentiation [21]. In contrast to our obser-
vations with IL-1β, mevastatin treatment of non-stimu-
lated PBMCs down-regulated constitutive IL-1Ra output
at 48 h by approximately 40% (p = 0.24; figure 3B); inter-
estingly, the magnitude of this reduction is similar to the
rate of monocyte apoptosis seen at that same time-point.
Following LPS stimulation, mevastatin-treated monocytes
again released less IL-1Ra than vehicle-treated cells (p =
0.29). This consistent observation reached statistical sig-
nificance after combined γIFN / LPS stimulation, when
mevastatin-treated monocytes released approximately

Kinetics of apoptosis in mevastatin-treated human peripheral blood monocytesFigure 2
Kinetics of apoptosis in mevastatin-treated human peripheral blood monocytes. Cultures were treated with vehicle (0.25% 
DMSO); 10 µM mevastatin; or mevastatin plus 100 µM mevalonolactone. Error bars represent SEM. *, p < 0.05; **, p < 0.01; 
***, p < 0.001.
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Mevastatin arrests the functional maturation of cultured human peripheral blood monocytesFigure 3
Mevastatin arrests the functional maturation of cultured human peripheral blood monocytes. LPS was added to PBMC cultures 
either at the onset (undifferentiated control), or after 24 h, of cell culture and supernatants were harvested 24 h later in each 
case. Pre-treatment with γIFN was only applicable to differentiating cells. Mevastatin treatment preserved monocyte respon-
siveness to LPS in terms of IL-1β release (A) but suppressed IL-1Ra release (B). *, p < 0.05; **, p < 0.01 (brackets indicate 
groups being compared).
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50% less IL-1Ra than vehicle-treated cells (3,836.2 +/-
841.6 vs 7,286.9 +/- 928.8 pg/mL; p = 0.03). Crucially,
mevalonolactone apparently failed to prevent the sup-
pression of IL-1Ra release by mevastatin (figure 3B).

Discussion
Fibroproliferative vascular disease, thought to arise as a
result of endothelial stress or trauma, is characterised by a
complex pathology that culminates in a spectrum of man-
ifestations, depending on the nature of the triggering
event. Thus, native atherosclerosis is thought to occur
mainly as a result of chronic oxidative stress, while
mechanical endothelial trauma initiates restenosis after
angioplasty or stenting. Lastly, allograft vasculopathy is
thought to arise chiefly as a result of endothelial dysfunc-
tion precipitated by both immune and non-immune
injury. Monocyte recruitment and retention in the vascu-
lar wall is a unifying feature of these diverse outcomes and
correlates strongly with the timing and severity of vascular
lesion formation [22–25].

Peripheral blood monocytes represent a heterogeneous
population of immature cells that differentiate upon exit-
ing the circulation. The tissue microenvironment plays a
crucial role in initiating and guiding monocyte differenti-
ation: arrest on a solid matrix is generally sufficient to ini-
tiate this process, while the presence of particular
cytokines and growth factors functions to steer it towards
a variety of phenotypes [26–28]. This process can be faith-
fully reproduced in vitro where, in the absence of exoge-
nous growth factors, approximately 80% of peripheral
blood monocytes spontaneously develop into macro-
phages [29]. One of the earliest functional indices of
monocyte-to-macrophage differentiation, both in vitro
and in vivo, is a markedly attenuated IL-1β release in
response to LPS [17,18].

Here we have demonstrated that mevastatin, an inhibitor
of HMG-CoA reductase, abolishes the profound down-
regulation of IL-1β release associated with monocyte dif-
ferentiation; and that this effect coincides temporally with
the induction of monocyte-specific apoptosis in human
PBMC cultures. While monocyte differentiation proceeds
spontaneously in vitro, lymphocytes differentiate only in
response to signals via the T/B cell receptor complexes,
which are lacking in pure PBMC cultures from single indi-
viduals; notably, these cells remained viable throughout
the observation period. Therefore, unlike previous obser-
vations with murine J744 myeloid cells [30], the suscepti-
bility of primary monocytes to statin-induced apoptosis
appears to be tightly linked to the process of cell
differentiation.

The precise molecular mechanisms underlying these find-
ings are currently under investigation; depletion of down-

stream products of the mevalonate pathway such as the
phosphorylated geranylgeranyl and farnesyl isoprenoids,
which would compromise G-protein function, is likely to
be involved. Shortage of such intermediates may be exac-
erbated in the face of increased utilization of the
mevalonate pathway that occurs during monocyte differ-
entiation [31], explaining the failure of mevalonolactone
supplementation to completely prevent apoptosis in our
experimental set-up. Conversely, mevalonolactone
appeared to accelerate the suppression of LPS-induced IL-
1β release in differentiating monocytes, hinting that the
mevalonate pathway regulates this process both dynami-
cally and bi-directionally. Hence this metabolic pathway
may represent a promising therapeutic target for diseases
involving dysregulated macrophage function.

Monocyte turnover in solid tissue is determined by the
balance between recruitment and clearance. Overproduc-
tion of monocyte chemoattractant protein (MCP-1) by
native vascular cells and macrophages is a major mecha-
nism promoting macrophage accumulation in atheroscle-
rotic [32,33] and neointimal [34,35] lesions. Statin
treatment was recently shown to down-regulate MCP-1
production in vitro and in vivo [36]; and to suppress the
release of various other atherothrombotic mediators by
plaque macrophages [15,36–40]. However, in most cases,
the potential contribution of cell death to these findings
was not concurrently investigated. Here we show that
HMG-CoA reductase inhibition suppressed the release of
IL-1Ra from LPS-stimulated monocytes; but that this sup-
pression was largely accounted for by apoptotic cell death.
Unlike IL-1β, the release of which occurs via stimulation
of the P2X7 receptor at the level of the cell surface [41] and
is thus refractory to apoptosis, secretion of IL-1Ra follows
the classical pathway, which is effectively shut down dur-
ing apoptosis [42]. While suppression of endothelial
MCP-1 synthesis might genuinely contribute to the bene-
fits of statin therapy, we suggest that induction of
monocyte apoptosis may underlie many downstream sta-
tin actions, including the reduction in plaque macrophage
counts and inhibition of in situ MMP and TF production
[37–40] (figure 4). It is noteworthy that, since osteoclasts
are also developmentally derived from peripheral blood
monocytes, this hypothesis fits well with the recently pro-
posed role of statins as modulators of bone formation
[43].

Interestingly, in vivo studies so far do not lend support to
our hypothesis. Libby and colleagues have postulated that
foam cell apoptosis might perpetuate vascular lipid accu-
mulation, contributing to atherosclerotic plaque growth
[2]. Furthermore, in a recent, very elegant study these
authors concluded that apoptosis is not involved in the
reduction of plaque macrophage counts by cerivastatin
and, instead, attributed these effects to suppression of cell
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growth [38]. The data presented here clearly challenge this
conclusion and we feel that rejecting apoptosis as a
possible mechanism of statin vasculoprotection may be
premature on several counts. Firstly, it is well known that
apoptotic cells are rapidly cleared in vivo and, in their
paper, Aikawa and colleagues acknowledged that very few
apoptotic cells were actually observed in both the control
and statin-treated groups [38]. In view of this, it is unfor-
tunate that these authors did not assess the role of apop-
tosis in their in vitro studies of monocyte differentiation.
Moreover, several reports have cautioned that the TUNEL
assay, used by Aikawa et al, may not allow accurate quan-
tification of apoptotic cells [44,45]. It might be argued

that cerivastatin doses investigated in the aforementioned
study (0.01–0.05 µM) reflect therapeutic plasma levels of
that drug, which may not be pro-apoptotic. However, in
support of our own findings, a recent study by Kaneider et
al [46] showed significant monocyte pro-apoptotic activ-
ity of low-dose (0.01 µM) cerivastatin, in terms of caspase-
3 activation. It should be noted that cerivastatin is rela-
tively hydrophilic and a more potent inhibitor of HMG-
CoA reductase than mevastatin; thus our findings with
mevastatin at relatively high doses may still be therapeu-
tically relevant. Further in vitro studies with clinically used
statins are currently in progress to address this issue.

Statin-mediated monocyte apoptosis in the context of atherosclerosisFigure 4
Statin-mediated monocyte apoptosis in the context of atherosclerosis. During formation of the atherosclerotic plaque mono-
cytes are recruited and retained in the vascular wall, where they differentiate into macrophages. Macrophages incorporate lip-
ids giving rise to foam cells, which exhibit a dysregulated phenotype possibly due to oxidative stress. Mature macrophages and 
foam cells are thought to promote plaque rupture by eroding the fibromuscular cap. This is likely achieved through release of 
matrix-degrading proteases and also via FasL-mediated cytotoxic effects on adjacent vascular smooth muscle cells. Statins mod-
ulate both primary vascular release of MCP-1 and monocyte chemotaxis. In situ monocyte apoptosis might also contribute to 
their downstream effects on plaque stability.
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Conclusions
HMG-CoA reductase inhibition in human peripheral
blood monocytes appears to maintain them in a function-
ally immature state and to render them susceptible to
apoptosis. We suggest that this may represent one mecha-
nism whereby statins decrease macrophage load and the
release of prothrombotic mediators in vascular lesions,
potentially leading to their prevention or regression.
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