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Abstract
Background: Death of smooth muscle cells in the atherosclerotic plaques makes the plaques more prone
to rupture, which can initiate an acute ischemic event. The development of atherosclerosis includes the
migration of immune cells e.g. monocytes/macrophages and T lymphocytes into the lesions. Immune cells
can release antimicrobial peptides. One of these, human cathelicidin antimicrobial peptide hCAP-18, is
cleaved by proteinase 3 generating a 4.5 kDa C-terminal fragment named LL-37, which has been shown to
be cytotoxic. The aim of the study was to explore a potential role of LL-37 in the pathophysiology of
atherosclerosis.

Methods: We investigated the presence of LL-37 in human atherosclerotic lesions obtained at autopsy
using immunohistochemistry. The direct effects of LL-37 on cultured vascular smooth muscle cells and
isolated neutrophil granulocytes were investigated with morphological, biochemical and flow cytometry
analysis.

Results: The neointima of atherosclerotic plaques was found to contain LL-37-like immunoreactivity,
mainly in macrophages. In cultured smooth muscle cells, LL-37 at 30 μg/ml caused cell shrinkage,
membrane blebbing, nuclear condensation, DNA fragmentation and an increase in caspase-3 activity as
studied by microscopy, ELISA and enzyme activity assay, respectively. Flow cytometry demonstrated that
LL-37 in a subset of the cells caused a small but rapidly developing increase in membrane permeability to
propidium iodide, followed by a gradual development of FITC-annexin V binding. Another cell population
stained heavily with both propidium iodide and FITC-annexin V. Neutrophil granulocytes were resistant
to these effects of LL-37.

Conclusion: This study shows that LL-37 is present in atherosclerotic lesions and that it induces death
of vascular smooth muscle cells. In a subset of cells, the changes indicate the development of apoptosis
triggered by an initial mild perturbation of plasma membrane integrity. The findings suggest a role for LL-
37 as a mediator of immune cell-induced death of vascular smooth muscle cells in atherosclerosis.
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Background
The smooth muscle cells are the principal source of colla-
gen in the atherosclerotic plaque [1]. During the develop-
ment of the plaques an increasing number of smooth
muscle cells die, at least partly due to programmed cell
death, apoptosis [2,3]. This impairs the collagen synthe-
sis, which weakens the fibrous cap and makes the athero-
sclerotic plaques more prone to rupture [1]. The tissue
exposed to the blood due to a plaque rupture is highly
thrombogenic and can initiate an acute ischemic event
[4].

An inflammatory response including the migration of
immune cells, especially monocytes and T cells, into the
lesion is pivotal to the development of atherosclerosis [5].
The weaponry of the cells of the innate immune system
includes antimicrobial peptides, which can be divided
into several groups based on their structure [6]. The cathe-
licidins comprise one group found in several mammalian
species. They contain a highly conserved N-terminal
domain, cathelin, and a variable C-terminal domain that
constitutes the antimicrobial peptide [7]. The 18-kDa pro-
tein human cationic antimicrobial protein (hCAP-18) is
the only human cathelicidin [8-10]. It is found in neu-
trophil granulocytes, lymphocytes and monocytes as well
as in tissues e.g. squamous epithelium, the lung and the
epididymis and is released extracellularly [11-15]. Liber-
ated hCAP-18 is cleaved by proteinase 3, generating a 4.5
kDa C-terminal fragment named LL-37 [16]. Apart from
having a broad antibacterial activity [17,18], LL-37 also
exhibits lipopolysaccharide (LPS)-binding and LPS-neu-
tralizing properties [17] as well as toxic effects on leuko-
cytes and erythrocytes [19,20].

In an earlier study, aiming to investigate the effects of LL-
37 on nitric oxide synthesis in the blood vessel wall, we
found that LL-37 non-specifically inhibits the expression
of inducible nitric oxide synthase in vascular smooth
muscle cells. The inhibition is accompanied by DNA frag-
mentation, suggesting that it is caused by cell death, pre-
sumably apoptosis [21].

Since apoptosis of vascular smooth muscle cells has been
implicated as an important factor in the pathophysiology
of atheromatous disease [22], we investigated the pres-
ence of LL-37 in atherosclerotic plaques as well as mor-
phological and biochemical effects of LL-37 on cultured
vascular smooth muscle cells. The results indicate that LL-
37 is present in the neointima of atherosclerotic lesions
and that it induces death of smooth muscle cells at con-
centrations lower than those previously reported to be
cytotoxic.

Methods
Immunohistochemistry
Paraffin-embedded archival material of human aorta
obtained from autopsy within 24 hours after death of four
persons at the Department of Pathology, Malmö Univer-
sity Hospital was subjected to immunohistochemistry.
Tissues were routine-fixed in 4% buffered paraformalde-
hyde and embedded in paraffin. Sections, 3.5 μm in thick-
ness, were prepared. Haematoxylin-eosin stained slides
were examined by a National Board-certified pathologist
(NHS) and atherosclerotic lesions were identified on the
basis of intimal thickening and the presence of foam cells.
Immunostaining for hCAP-18/LL-37 was performed
using DAKO ChemMate™ detection kit (code K5001) and
a DAKO TechMate™ 500/1000 staining machine (BioTek
solutions, Winooski, VT, USA). Briefly, the sections were
deparaffinized and rehydrated. For antigen retrieval, tis-
sue sections were incubated with citrate buffer (10 mM,
pH 6.0) and heated in a microwave oven at 750 W for 2 ×
5 min. The sections were incubated with a Protein A-puri-
fied polyclonal immunoglobulin G (Ig G) fraction raised
against recombinant hCAP-18 [23] at a final dilution of
0.5 μg/mL followed by biotinylated mouse anti-rabbit
IgGs. The antibodies against hCAP-18 recognize both
intact hCAP-18 and the active C-terminal fragment LL-37
[15]. Immunoreactivity was visualized using the manufac-
turer's protocol with horseradish peroxidase (SA-HRP)
and 3,3'diaminobenzidine tetrahydrochloride (DAB) as
chromophore. Then, sections were counterstained with
Mayer's hematoxylin solution and coverslips applied with
Faramount™ mounting medium (DAKO A/S). As a nega-
tive control, adjacent sections were processed by replacing
the primary antibody with non-immune rabbit IgG
(DAKO) used at same concentration as the primary anti-
hCAP-18 polyclonal IgGs used. Double staining of sepa-
rate sections of the lesions was performed using the anti-
body raised against hCAP-18 and the ChemMate™
EnVision™ Detektion Kit (DAKO, code K5007) yielding a
brown colour and a monoclonal mouse anti-human
CD68 antibody (DAKO, Code M 0814) and ChemMate™
Detektion kit, APAAP (DAKO, code K5000) yielding a red
colour.

Isolation and culture of vascular smooth muscle cells
The Review Board for the care of animal subjects approved
the study (The Animal Research Ethics Council of Malmö/
Lund, Approval No. M145-03). Vascular smooth muscle
cells were isolated from the thoracic aorta of a male
Sprague Dawley rat by the explant method [24,25]. The
cells were identified as smooth muscle cells by their char-
acteristic hill and valley appearance in culture and by their
expression of an approximately 40-kDa protein with
immunoreactivity corresponding to smooth muscle α-
actin as determined by Western blot using a monoclonal
anti-smooth muscle α-actin antibody (A-2547, Sigma-
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Aldrich St. Louis, MO, USA). Primary human aortic
smooth muscle cells (CC-2571) were obtained from Bio
Whittaker, Walkersville, Md. At confluence, the cells were
harvested using 0.025 % trypsin and 0.01 % v/v ethylene-
diaminetetraacetic acid (EDTA, both from Sigma-
Aldrich), rinsed in Hanks' Balanced Salt Solution, seeded
at a density of 25 % and further cultured in Dulbecco's
Modified Eagle's Medium (DMEM) containing fetal
bovine serum (10 %), penicillin (100 U/ml), streptomy-
cin (100 μg/ml) and amphotericin-B (250 ng/ml, all from
Life Technologies, Täby, Sweden). The subsequent experi-
ments were performed with cells from passage 3–6 or 5–7
for rat and human cells, respectively.

Isolation of human neutrophils
Human neutrophils were isolated from heparinized
blood from healthy donors using the Polymorph isola-
tion kit (Nycomed Pharma AS Diagnostics, Oslo, Nor-
way). Following the manufacturer's instructions, whole
blood was layered carefully on neutrophil isolation
medium and centrifuged at 400 × g for 30 min at room
temperature. After centrifugation the following fractions
were apparent: mononuclear cells, neutrophils and eryth-
rocyte pellet. The polymorphonuclear leukocytes layer
was suspended in PBS, followed by 10 min centrifugation
at 350 × g; residual erythrocytes were removed by hypot-
onic lysis. After two washes in PBS with centrifugation for
5 min at 250 × g, the pellet was suspended in Minimum
essential medium (MEM) and neutrophils were counted
using a hemocytometer. The concentration of cells was
adjusted to 107 cells/ml.

Microscopy of cultured cells
Rat aorta smooth muscle cells were grown on methanol-
cleansed coverslips in 6-well plates and incubated for 2 or
5 h in serum free DMEM with/without LL-37 (10 or 30 μg/
ml) or camptothecin (5 μg/ml, Sigma-Aldrich). After cul-
ture, the coverslips were washed with ice-cold PBS con-
taining 1 mM Ca2+ and the cells were then stained at room
temperature for 20 min with FITC-annexin V (20 μg/ml,
Roche Molecular Biochemicals, Mannheim, Germany)
and 4'6-diamino-2-phenyliondole dihydrochloride
(DAPI) nucleic acid stain (100 nM, Molecular probes,
Eugene, OR, USA). Thereafter, the cells were fixed with 1
% paraformaldehyde (Becton Dickinson, Bedford MA,
U.S.A) in ice-cold PBS containing 1 mM Ca2+. Fixation
was initiated on ice for 15 min and continued at room
temperature for 45 min. Cover slips were then mounted
using ProLong AntiFade Reagent (Molecular Probes). Vis-
ual inspection and recording of images was performed
using a Nikon Eclipse TE300 inverted fluorescence micro-
scope equipped with a Hamamatsu C4742-95 cooled
CCD camera, using a Plan Apochromat 60 × objective.

Measurement of caspase-3 activity
Confluent rat aorta smooth muscle cells cultured on 24-
well plates were incubated for 1, 3 or 7 h in serum free
DMEM in the absence (control) or presence of LL-37 (10
or 30 μg/ml). The caspase-3 activity was measured by
using a fluorometric immunosorbent enzyme assay
(FIENA, Roche Molecular Biochemicals) according to the
manufacturer's instructions. Briefly, the caspase-3 from
cellular lysates was captured by immobilized monoclonal
anti-caspase-3 antibodies followed by addition of a sub-
strate that is cleaved by caspase-3 generating a fluorescent
compound. Fluorescence was then measured at 400 nm
excitation and 505 nm emission. Simultaneous measure-
ment of lactate dehydrogenase (LDH) activity in the
medium (see below) indicated that a fraction of the cells
lysed during the incubation. The caspase-3 activity values
were therefore corrected in order to correspond to the frac-
tion of intact cells using the formula

Where VIC is the caspase-3 activity of intact cells, VC is the
caspase-3 activity of the sample, VL is the LDH activity of
the sample and VLT is the total LDH activity of lysed cells.
The caspase-3 activity is expressed as % of untreated con-
trols.

Measurement of DNA fragmentation
Confluent rat or human aorta smooth muscle cells cul-
tured on 24-well plates were incubated in serum free
DMEM for 16 h in the absence (control) or presence of LL-
37 (10 and 30 μg/ml). Internucleosomal DNA fragmenta-
tion was measured using a Cell Death Detection ELISA Kit
(Roche Molecular Biochemicals) according to the manu-
facturer's instructions. In short, the cells were lysed in the
culture wells and the DNA fragments in the lysate were
bound to a microtiter plate coated with monoclonal anti-
histone antibodies. The bound DNA fragments were then
detected by peroxidase-conjugated monoclonal anti-DNA
antibodies and 2,2'-azino-di- [3-ethylbenzthiazoline sul-
fonate]. Optical density was measured at 415 nm and is
expressed as % of untreated controls.

LDH assay
Confluent rat aorta smooth muscle cells cultured on 24-
well plates were incubated for 1, 3, or 7 h in serum free
DMEM in the absence (control) or presence of LL-37 (10
or 30 μg/ml). The lactate dehydrogenase (LDH) activity
released into the medium was measured by using the in
vitro toxicology assay kit (Tox-7, Sigma-Aldrich) according
to the manufacturer's instructions. In short, the medium
was centrifuged at 2000 × g for 4 min. The LDH in the
supernatants converted a tetrazolium dye, which was
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measured spectrophotometrically at 490 nm. The LDH
activity is expressed as % of total LDH activity of lysed
cells.

Flow cytometry
Rat aorta smooth muscle cells were harvested from culture
plates using trypsin/EDTA and washed in PBS once fol-
lowed by a 2-h incubation in bicarbonate free MEM at
37°C using gentle end-over-end rotation. Thereafter, LL-
37 (30 μg/ml) was added and cells were incubated for 10,
30, 60, or 120 min followed by pelleting and re-suspen-
sion in cold calcium-containing PBS. Staining was per-
formed for 20 min on ice with FITC-annexin V (30 μg/ml)
and propidium iodide (30 μg/ml, BD Pharmingen, San
Diego, CA, USA) in calcium-containing PBS. Fluores-
cence-activated cell sorter (FACS) analysis was performed
immediately (Becton Dickinson FACS Calibur instru-
ment). 10,000 cells/sample were counted, and results
were evaluated by using the Cell Quest software (Becton
Dickinson). The same protocol was used for staining of
human neutrophils incubated with LL-37 (30 μg/ml) for
30 or 120 min.

Statistical analysis
DNA fragmentation was analyzed using Kruskal-Wallis
one way ANOVA on ranks followed by Dunnett's post hoc
test. LDH and caspase-3 activity was analyzed using one
way repeated measures ANOVA followed by Holm-Sidak
test. Significance was accepted at P < 0.05. Values are
means ± S.E.M.; 'n' equals number of independent exper-
iments.

Results
LL-37 is present in atherosclerotic plaques
Immunohistochemistry demonstrated dense labeling in
atherosclerotic lesions of all specimens (fig. 1). The stain-
ing was most intense in the neointima, i.e. hyperplastic
portions of the intima laying adjacent to the vascular
lumen. In portions of the aortic wall with a normal
appearance no labeling was observed. Double staining
showed that most of the hCAP-18/LL-37 labeling was
present in CD68 positive cells, i.e. in macrophages.

LL-37 induces morphological changes and disrupts the cell 
membrane phospholipid asymmetry
Exposure of cultured smooth muscle cells to LL-37 at 10
μg/ml caused only small and inconsistent morphological
changes (not shown). Exposure to LL-37 at 30 μg/ml for 2
or 5 h resulted in progressive cell shrinkage and a rough
appearance of the cell membrane (fig. 2).

DAPI is a membrane-permeable fluorochrome that stains
DNA/RNA. As demonstrated in fig. 2, the nuclei of most
cells appeared smaller with fragmented chromatin after 2
or 5 h incubation with LL-37 (30 μg/ml).

A reduction in cell volume, nuclear condensation and
chromatin fragmentation are typical changes seen during
cell death via the apoptosis pathway [26,27] and has pre-
viously been observed in vascular smooth muscle cells
during apoptosis induced by cytokines [28], or by over-
expression of tissue inhibitor of metalloproteinase-3 [29].

During early stages of apoptosis in vascular smooth mus-
cle cells, phosphatidylserine is exposed on the outer sur-
face of the cell membrane where it can then be stained
with FITC-annexin V [30-32]. The plasma membrane of
most cells incubated with LL-37 (30 μg/ml) for 2 or 5 h
bound FITC-annexin V (fig. 2). No staining was seen in
control cells.

Taken together, the results of the morphological studies
suggest that LL-37 induces cell death via an apoptosis-like
mechanism. The cellular changes induced by LL-37 (30
μg/ml) were similar to those induced by camptothecin, a
compound well known to induce apoptosis (not shown)
[33].

LL-37 increases the caspase-3 activity
Although apoptosis was originally characterized on the
basis of changes in cell morphology, these are secondary
to biochemical alterations [34]. One feature of apoptosis
is an increase in caspase-3 activity, also demonstrated in
smooth muscle cells [32]. LL-37 (30 μg/ml) induced an
increase in caspase-3 activity after 1 h incubation, which
persisted for 7 h (P < 0.05). This supports the morpholog-
ical results suggesting that vascular smooth muscle cells
exposed to LL-37 undergo apoptosis (fig. 3).

LL-37 induces DNA fragmentation
Incubation with LL-37 for 16 h caused a significant inter-
nucleosomal DNA fragmentation in both rat and human
cultured aortic smooth muscle cells (P < 0.05, fig. 4). The
degree of fragmentation induced by 30 μg/ml was similar
to that induced by cytokines in cultured human vascular
smooth muscle cells [28]. A statistically significant frag-
mentation compared to control was found at an LL-37
concentration as low as 10 μg/ml. This shows that LL-37
can induce apoptosis-like cell death at low concentra-
tions, similar to the MIC value for several bacterial strains
[17-19].

LL-37 causes cellular leakage of LDH activity
Fig. 5 shows that the release of LDH activity from the vas-
cular smooth muscle cells into the cell culture medium
was significantly higher from cells incubated with LL-37
(30 μg/ml), as compared to controls (P < 0.05). The LDH
increase, observed already after incubation with LL-37 for
one h, suggests a loss of cell membrane integrity.
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Flow cytometry
Finally, we followed up these results by flow cytometry
analysis of suspended vascular smooth muscle cells (fig.
6). Cells with an intact plasma membrane are impermea-
ble to propidium iodide while extensive membrane dam-
age, such as due to necrosis, markedly increases the influx
and staining of intracellular components by propidium
iodide. Also, FITC-annexin V enters necrotic cells, staining
internal membranes by binding to phosphatidylserine.
However, during apoptosis, phosphatidylserine is
exposed on the outer surface of the cell membrane and

FITC-annexin V thus also stains apoptotic cells. Thus, dual
color flow cytometry with FITC-annexin V/propidium
iodide can be used to assess the cell fractions undergoing
apoptosis and necrosis, respectively.

In a diagram plotting the FITC-annexin V signal on the x-
axis and the propidium iodide signal on the y-axis, nor-
mal cells, stained weakly with both FITC-annexin V and
propidium iodide, can be found in the lower left part of
the diagram. Necrotic cells stain heavily with both FITC-
annexin V and propidium iodide and will therefore be

Detection of hCAP-18/LL-37 by immunohistochemistry in sections of human aortaFigure 1
Detection of hCAP-18/LL-37 by immunohistochemistry in sections of human aorta. (A) Low power view. Binding 
of the specific antibody was detected by peroxidase, which yields a brown color reaction against a pale background. Dense 
binding was found in the neointima (N) of an athreosclerotic lesion. The vascular lumen (L) and the tunica muscularis (TM) are 
indicated. (bar, 100 μm). (B) Portion of the neointima indicated in (A). hCAP-18/LL-37-like immunoreactivity is found (bar, 100 
μm). (C) Control, where the specific antibody has been replaced by nonimmune serum, resulting in loss of labeling (bar, 100 
μm). (D) High power image of a slide double stained for hCAP-18/LL-37 (brown) and the macrophage marker CB68 (red). 
HCAP-18/LL-37 and CD68 immunoreactivity are mainly co-localized to the same cells (bar, 10 μm).
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Microscopic images of cultured vascular smooth muscle cellsFigure 2
Microscopic images of cultured vascular smooth muscle cells. Cells were incubated in the absence (control, A, B, C) 
or presence of LL-37 (30 μg/ml) for 2 (D, E, F) or 5 (G, H, I) hours. The images show cells viewed with differential interface 
contrast (Nomarski) microscopy (A, D, G), stained with 4'6-diamino-2-phenyliondole dihydrochloride (DAPI), (B, E, H), or 
FITC-annexin V (C, F, I). Control cells have a smooth surface (A) with large evenly stained nuclei (B) and no FITC-annexin V 
staining of the cell membrane (C). After 2 hours' incubation with LL-37, some cells appear shrunken with a rough surface (D), 
smaller nuclei with fragmented chromatin (E), and a cell membrane staining with FITC-annexin V (F) indicating apoptosis. After 
5 h the apoptotic changes are more marked (G, H, I; bar, 10 μm).
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plotted in the upper right part of the diagram. Finally,
apoptotic cells display mainly a FITC-annexin V fluores-
cence and therefore resides in the lower right part of the
diagram. In the present study, untreated control cells gen-
erally displayed low staining for both FITC-annexin V and
propidium iodide except for a small population of
necrotic cells (17%, fig. 6A). This pattern was not changed
during 180 min incubation (not shown). Incubation with
LL-37 (30 μg/ml) resulted within 10 minutes in an
increase in propidium iodide staining of the viable cells,
indicating a rapidly developing LL-37-induced permeabil-
ity increase (fig. 6C). The increase was only 10-fold, which
is a moderate increase compared to the increase in the
propidium iodide fluorescence signal of the necrotic cells,
which was about 1000-fold. The propidium iodide stain-
ing of this population then remained constant during the
following 170 min. The FITC-annexin V staining of the
moderately propidium iodide-positive cell population,
still residing in the lower left part of the diagram at 10
minutes (fig. 6C), increased gradually during 180 min-
utes, indicating the development of apoptosis (fig. 6E, G
and 6I).

This rightward shift transferred these cells into the lower
right part of the diagram, the percentage of cells in this
part increasing from 5.1 % at 10 minutes to 28 % at 180
minutes. The gradual rightward shift of these cells is illus-

trated as the leftmost peak in the histograms of FITC-
annexin V fluorescence (fig. 6D, F, H and 6J). This peak
was shifted from about 2 fluorescence units at 10 minutes
to 30 units at 180 minutes. This represents a 15 fold
increase in FITC-annexin V fluorescence. The magnitude
of this rightward shift was similar to the shift observed in
vascular smooth muscle cells undergoing apoptosis in
response to serum deprivation [31] or generation of reac-
tive oxygen species [32]. A growing cell population that
stained heavily with both propidium iodide and FITC-
annexin V can, however, be observed in the upper right
part of the diagrams fig. 6A, C, E, G and 6I, indicating that
the number of severely damaged cells increased in parallel
to the development of apoptosis. This cell population
may explain the early rise in LDH activity and the changes
could be either secondary to the apoptotic events or rep-
resent a subset of cells undergoing severe membrane dam-
age due to immediate cytolysis. In contrast, human
neutrophils incubated with LL-37 (30 μg/ml) showed
weak staining with propidium iodide and FITC-annexin V
after both 30 and 120 minutes' incubation time, indicat-

Caspase-3 activity in cultured vascular smooth muscle cellsFigure 3
Caspase-3 activity in cultured vascular smooth mus-
cle cells. Cells were incubated for 1, 3 or 7 hours in the 
presence of LL-37 at 10 (●) or 30 (■) μg/ml. A significant 
increase in caspase-3 activity was observed in cells incubated 
for 1, 3 and 7 hours with LL-37 at 30 μg/ml (n = 6, *P < 0.05, 
one way repeated measures ANOVA followed by Holm-
Sidak test). Values are means + or - S.E.M.

Effect of LL-37 on DNA fragmentation in cultured rat and human aortic smooth muscle cellsFigure 4
Effect of LL-37 on DNA fragmentation in cultured rat 
and human aortic smooth muscle cells. Rat (filled bars) 
and human (open bars) cells were analyzed after 16 h incuba-
tion. LL-37 at 10 and 30 μg/ml induced a statistically signifi-
cant DNA fragmentation in rat cells compared to controls 
and LL-37 at 30 μg/ml induced a statistically significant DNA 
fragmentation in human cells compared to controls (n = 7, * 
P < 0.05, Kruskal-Wallis one way ANOVA on ranks followed 
by Dunnett's test). Values are means + S.E.M.
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ing that neutrophils are resistant to LL-37 at this concen-
tration (not shown).

Discussion
The present results show that the human cathelicidin anti-
microbial peptide LL-37 is present in atherosclerotic
plaques of human aorta and that it induces changes in cul-
tured vascular smooth muscle cells some of which are typ-
ical for apoptosis. Apoptosis, also termed programmed
cell death, is essential in normal tissue development and
homeostasis [33], but it has also an important role in the
pathophysiology of common conditions such as athero-
sclerosis. Recently Lau and colleagues demonstrated that
LL-37 at similar concentrations induces apoptosis in
human lung and airway epithelial cells [35].

Apart from its bactericidal action, LL-37 has previously
been found to be cytotoxic to eukaryotic cells such as
human peripheral leukocytes and the T-cell line MOLT
[19] and also to cause lysis of human red blood cells
[20,36]. However, the concentrations required were
higher than those inducing the apoptosis-like changes in
vascular smooth muscle cells and airway epithelial cells,
suggesting a different mechanism of action. It cannot be
determined on the basis of the present results whether the
concentrations required to induce the changes are patho-

Release of LDH from cultured vascular smooth muscle cellsFigure 5
Release of LDH from cultured vascular smooth mus-
cle cells. Cells were incubated for 1, 3 or 7 hours without 
(Control, ❍) or with LL-37 at 10 (●) or 30 (■) μg/ml. The 
release of LDH was significantly increased from cells incu-
bated for 1, 3 and 7 hours with LL-37 at 30 μg/ml (n = 7, *P < 
0.05, One way repeated measures ANOVA followed by 
Holm-Sidak test). Values are means ± S.E.M.

Flow cytometry of cultured vascular smooth muscle cellsFigure 6
Flow cytometry of cultured vascular smooth muscle 
cells. Dot-plots (left) of FITC-annexin V (x-axis)/propidium 
iodide (y-axis) fluorescence and corresponding histograms 
for FITC-annexin V fluorescence (right) of vascular smooth 
muscle cells incubated in the absence (A, B, control) or pres-
ence of LL-37 (30 μg/ml) for 10 min (C, D), 30 min (E, F), 60 
min (G, H) or 180 min (I, J). The diagrams on the left are 
divided into four areas and the percentages of the total 
number of stained cells within each area are given. Viable 
control cells are found in the lower left part if the diagrams 
and non-viable cells, heavily stained with FITC-annexin V and 
propidium iodide, are found in the upper right part of the 
diagrams. Apoptotic cells, stained with FITC-annexin V but 
not propidium iodide, are found in the lower right part of the 
diagrams. Incubation with LL-37 resulted, within 10 min, in a 
moderate increase in propidium iodide staining (C) of the 
viable cells followed by a gradually developing increase in 
FITC annexin V staining from 5.1 % at 10 minutes to 28 % at 
180 minutes indicating the development of apoptosis (E-J). 
The fraction of non-viable cells increased from 17 to 54 % 
during the whole time course studied.
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physiologically relevant. We found a statistically signifi-
cant DNA fragmentation induced by LL-37 at 10 μg/ml,
while a statistically significant increase in caspase-3 activ-
ity as well as distinct morphological cellular changes
within the time frame investigated required 30 μg/ml.
Sørensen and colleagues [23] found a plasma level of LL-
37 around 1.2 μg/ml, which is considerably lower than
the levels required in the present study. However, the
mean levels of LL-37 have been shown to double in tra-
cheal aspirates of newborn infants during infection [37].
This indicates that levels of LL-37 are locally increased
during inflammation and activation of the immune sys-
tem. It is supported by the finding of a large increase in LL-
37 expression in human skin after sterile incision [38].
Furthermore, infection of mice skin with group A strepto-
cocci increases the local expression of the corresponding
murine cathelicidin CRAMP [38]. These results suggest
that the local levels of LL-37, at a site of inflammation,
such in an atheroma, may reach the range of those dem-
onstrated to be harmful to the smooth muscle cells used
in the present study.

Disruption of the plasma membrane integrity can trigger
apoptosis [33]. Cathelicidins, including LL-37, have been
shown to bind to the negatively charged bacterial mem-
brane by means of their positive charge [39]. However, LL-
37 also binds to the zwitterionic membranes of eukaryotic
cells, probably due to its hydrophobicity [18,20,40]. The
present results suggest that this binding results in an
increase in membrane permeability as LL-37 induced a
small but rapidly developing increase in propidium
iodide staining, already before extensive membrane dam-
age was observed. However, the flow cytometry results
showed that one population of cells gradually progressed
to a state with more severe membrane damage, allowing
efficient staining of both DNA and internal membranes.
Such deteriorated cells, could detach from the surface and
in the analysis of adherent cells, this population might be
underestimated.

Risso and colleagues have shown that the bovine catheli-
cidins BMAP-27 and BMAP-28 induce DNA fragmenta-
tion and morphological alterations in human activated
lymphocytes and U937 cells, indicating apoptosis [41].
They also found that apoptosis is preceded by an increase
in membrane permeability to propidium iodide. Thus,
human and bovine cathelicidins may induce apoptosis
via a similar mechanism. It has further been shown that
human antimicrobial peptides of the well characterized
class α-defensins induce a rapidly developing membrane
permeabilization in K562 cells, followed by a second
phase, possibly representing apoptosis [42]. Both α-
defensins and the frog antimicrobial peptides magainins
form channels in eukaryotic cell membranes [43,44]. It
has been demonstrated that LL-37 forms oligomers in

eukaryotic membranes [20], but it remains to be deter-
mined whether these represent channels.

In the present study, neutrophil granulocytes were not
affected by LL-37 even after prolonged exposure at the
same concentration that seemed to induce apotosis in vas-
cular smooth muscle cells. In fact, the results from two
recent studies suggest that LL-37 can inhibit spontaneous
neutrophil granulocyte apoptosis [45,46]. This protective
effect of LL-37 seems to be mediated, at least partly, by the
chemoattractant receptor formyl receptor-like peptide 1
(FPRL1) [46]. One reason for the different action of LL-37
on neutrophils and vascular smooth muscle cells could be
that vascular smooth muscle cells do not express FPRL1
(unpublished observations). This hypothesis is supported
by the observation that LL-37 does not induce apoptosis
but proliferation in FPRL1-expressing human umbilical
vein endothelial cells [47].

Onset and progression of atherosclerosis requires the
recruitment of immune cells into the atherogenic foci
[4,5]. Monocytes migrate into the atherosclerotic lesions
and are to a large extent retained there in their mature
form, macrophages [48]. In the present study we demon-
strated the presence of hCAP-18/LL-37-like immunoreac-
tivity in atherosclerotic plaques. These results confirm
those of a recently published study by Edfeldt and col-
leagues who demonstrated the expression of LL-37 in
artherosclerotic material obtained from patients undergo-
ing carotid endarterectomy [49]. As in the present study,
LL-37 immunoreactivity was mainly found in macro-
phages, which have previously been found to synthesize
and release LL-37 [11]. Serial staining demonstrated that
LL-37 was also expressed in some specimens in endothe-
lial but not in smooth muscle cells [49]. Edfeldt and col-
leagues found that Chlamydia peumoniae, which has been
associated with atherosclerotic disease [50], is resistant to
the antimicrobial action of LL-37, possibly one reason for
its survival in the atherosclerotic lesion [49].

Vascular smooth muscle cells co-cultured with monocytes
undergo apoptosis via direct cell/cell contact resulting in
Fas-ligand/Fas interactions [51]. However, this monocyte-
induced apoptosis is promoted by soluble macrophage-
derived pro-apoptotic factors such as nitric oxide [52] and
tumor necrosis factor-α [53]. The present results suggest
that LL-37 could be another substance contributing to the
monocyte/macrophage-induced apoptosis of smooth
muscle cells. Smooth muscle cell apoptosis is predomi-
nant in the region underlying a plaque rupture [2,54]. The
involvement of LL-37 in this process is based on the
assumption that LL-37 is released in such advanced
lesions. The specimens examined in the present study as
well as those demonstrated by Edfeldt and colleagues [49]
all represent lesions compatible with an earlier stage of
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the disease, fibroatheromas. Thus, any differential expres-
sion of LL-37 during the development of an atheroma as
well as in more advanced lesions needs to be subject of
further study. However, macrophages have been demon-
strated to accumulate adjacent to thinning or rupture of
the fibrous cap of advanced lesions [55]. The spatial asso-
ciation between LL-37 containing cells and smooth mus-
cle cell apoptosis also needs to be addressed.

Apart from being implicated in plaque rupture, smooth
muscle cell apoptosis has been found to precede the calci-
fication of atherosclerotic lesions [56]. Furthermore, the
immune cells are recruited to the atherosclerotic lesions
via expression of cell adhesion molecules and the chemo-
tactic activity of oxidized LDL and IL-8 [4]. Agerberth and
colleagues and Yang and colleagues have demonstrated
that LL-37 has a chemotactic function in T-cells and
monocytes via activation of the formyl peptide receptor-
like 1 (FPRL1) [11,57]. It seems plausible that the release
of LL-37 could contribute to attracting more of these cells
into the atherosclerotic plaques.

The present findings of the morphological changes, the
time-dependent-binding of FITC-annexin V, the increase
in caspase-3 activity and the DNA fragmentation all point
to that LL-37 induces apoptosis in a subset of cultured vas-
cular smooth muscle cells. However, the parallel leak of
LDH from the cells and the flow cytometry results suggest
that there could be another cell population that die from
necrosis. Why some cells apparently undergo apoptosis,
while other cells die from necrosis cannot be determined
on the basis of the present results, but the faith of a cell
may be cell cycle dependent. This is supported by the find-
ing that LL-37 analogs induce apoptosis in an oral squa-
mous carcinoma cell line but not in normal gingival
fibroblasts or human keratinocytes [58].

Conclusion
We have demonstrated that LL-37 is present in atheroscle-
rotic lesions and induces death of cultured vascular
smooth muscle cells, mainly via an effect on the plasma
membrane permeability leading to apoptosis. These find-
ings suggest a role for LL-37 as a mediator of immune cell-
induced apoptosis of vascular smooth muscle cells in
atherosclerosis.
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