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Abstract

Background Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And
persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney
disease. There are many risk factors that lead to hypertension, including various environmental chemicals that
humans are exposed to, which are believed to be modifiable risk factors for hypertension.

Objective To investigate the role of environmental chemical exposures in predicting hypertension.

Methods A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation
was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied
to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision
score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and
diastolic blood pressure levels.

Results All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SYM) being the
best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717,0.708 and 0.822,
respectively. The R? of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for
diastolic blood pressure.

Conclusions In this study, relatively accurate prediction of hypertension was achieved using environmental
chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for
hypertension.

Keywords Environmental chemicals, Hypertension, Machine learning, Multiple imputation

*Correspondence:

Hao Zhou

wyzh66@126.com

'Department of Cardiology, The First Affiliated Hospital of Wenzhou
Medical University, Nanbaixiang Hospital District, Ouhai District,
Wenzhou City 325000, Zhejiang Province, China

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the

licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12872-024-04216-z&domain=pdf&date_stamp=2024-10-8

Guo et al. BMC Cardiovascular Disorders (2024) 24:544

Background

Hypertension, a common cardiovascular disease [1, 2]
with a prevalence of approximately 30% in adults, affects
more than one billion adults worldwide [3, 4]. Persistently
elevated blood pressure can lead to multiple systemic
diseases such as stroke, cognitive impairment, coronary
artery disease, nephropathy and retinopathy [5-8]. How-
ever, it is estimated that more than half of people with
hypertension are unaware of their condition, and of those
who are aware, many have poor compliance leading to
inadequate treatment [9, 10]. Identifying the underlying
causes can help prevent and control hypertension [11].
The etiology of hypertension involves a complex interplay
of environmental and genetic susceptibilities. Among
these, uncontrollable factors include age, gender, race,
etc. Controllable factors include diet, physical activity
level, obesity, smoking, etc.

In addition, environmental chemicals, as a class of con-
trollable risk factors, have received increasing attention in
recent years because of the inevitable exposures to them
in daily life. Much evidence suggested that environmen-
tal chemicals were highly associated with hypertension.
For example, Xueling Lu’s review indicated that exposure
to phthalates (PAEs) was a risk factor for hypertension
[12]. Another paper, based on NHANES database, found
that high exposure to mercury levels was associated with
elevated blood pressure and prevalence of hypertension
[13]. Similarly, Yao Xu found significantly higher Systolic
(SBP) and diastolic blood pressure (DBP) levels in people
exposed to high mixtures (Pb, Cd, Hg, As) [14]. More-
over, perfluoroalkyl substances (PFAS) was thought to
be associated with elevated blood pressure, in both preg-
nant women and the general population [15, 16]. Poly-
cyclic aromatic hydrocarbons (PAHs) and phenols have
been associated with an increased risk of hypertension
[17, 18]. Overall, a large number of studies have analyzed
the association between chemical exposures and the risk
of hypertension, but few have elucidated the predictive
role of chemical exposures on hypertension, especially
when combined with multiple categories of chemical
exposures.

Machine learning, as a branch of artificial intelligence,
is becoming increasingly important in the medical field
due to its ability to handle large, complex and diverse
data [19]. Compared to traditional predictive models,
machine learning can not only handle complex data
types, but also has higher accuracy, greater adaptability
and intelligence [20].

The importance of early identification of hypertension
cannot be overlooked, but the predictive role of environ-
mental chemicals on hypertension has not been clarified.
To explore the association between chemical exposures
and hypertension, we performed an analysis by using
NHANES data. In addition, machine learning-based
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predictive models were performed to assess the value of
multiple categories of environmental chemicals in pre-
dicting hypertension.

Methods

Study population

National Health and Nutrition Examination Survey
(NHANES) is a nationally representative survey con-
ducted by the National Center for Health Statistics
(NCHS) aimed at evaluating the health and nutrition sta-
tus of residents in the United States. The survey is pub-
licly available and has obtained ethical approval (https://
www.cdc.gov/nchs/nhanes/irba98.htm). The  survey
includes 5 main categories of data: demographic, dietary,
examination, laboratory, and questionnaire. In this study,
we included participants from 2003 to 2016 who under-
went at least one complete blood pressure measurement.
Participants under 20 years of age, pregnant women, and
those without urine creatinine were excluded. The envi-
ronmental chemicals of interest were tested in each cycle,
but not all participants were measured for all 30 environ-
mental chemicals. Therefore, we excluded participants
who were missing more than 15 environmental chemicals
to ensure the accuracy and reliability of the study. In the
end, a total of 11,039 participants were included in the
study (Figure S1).

Data collection

Our study included participants over 7 NHANES cycles
from 2003 to 2016. The public data files of the NHANES
database are freely available for researchers through the
NCHS website. Demographic data included age, gender,
race/ethnicity, family poverty-income ratio (PIR), and
education level. Dietary data included total energy intake,
protein, carbohydrates, fat intake, alcohol intake, as
well as potassium and sodium intake. Dietary data were
obtained using 24-hour dietary recalls. Most participants
had both day 1 and day 2 recall data and we calculated
their average; otherwise we used data from one day.
Questionnaire data included physical activity, smoking
status, pack-years, and sleep disorders. Examination data
included blood pressure, waist circumference, and body
mass index (BMI). A total of 30 environmental chemi-
cals were included in our study as potential predictors of
hypertension. These included 4 metallic and non-metallic
elements, 7 PAHs, 6 PFAS, 10 PAEs, and 3 phenols (Table
S1). Detailed information on the collection of blood and
urine samples and measurement methods for chemi-
cal substances could be found on the NCHS website.
Values below the limits of detection (LOD), released by
the national report on human exposure to environmen-
tal chemicals from the U.S. Centers for Disease Control
and Prevision (CDC) were imputed as the lowest LOD
divided by the square root of two (NHANES 2009-2010:
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Phthalates - Urine Data Documentation, Codebook, and
Frequencies (cdc.gov)). As recommended, urinary creati-
nine was used as a reference to account for urinary dilu-
tion [21].

Data pre-processing

First of all, environmental exposures with missing values
greater than 50% were excluded from the study, includ-
ing 6 PFAS and As, which could have significant implica-
tion on data analysis. Subsequently, a natural logarithm
transformation was applied to other 23 environmental
chemicals to improve their normal distribution. Miss-
ing values were then imputed with multiple imputa-
tion, which is an effective and widely accepted method
for handling missing values [22, 23]. We performed the
‘pmm’ methods in the ‘mice’ R package to impute missing
values and obtained 5 slightly different imputed datasets,
meaning that their values were not exactly the same, but
not statistically different. The ‘Predictive Mean Matching’
(PMM) algorithm matches the missing value with several
non-missing observed values, and then randomly selects
one value from these most matched non-missing values
to impute, which was used to handle most missing val-
ues. To reduce selection bias, participants were assigned
to the same training/test fold (70:30) in the 5 imputed
datasets.

Diagnostic criteria for hypertension and definition of some
covariates

Participants were diagnosed with hypertension if any of
the following conditions were met. Mean systolic blood
pressure =140 mmHg, mean diastolic blood pressure=>90
mmHg, self-reported hypertension, and participants tak-
ing antihypertensive medication. The mean blood pres-
sure was the average of at least 1 and at most 3 blood
pressure values.

Some covariates were defined as described below.
Smoking status was categorized as never smokers ver-
sus ever smokers. Pack-years, calculated for ever smok-
ers only, were defined as: (packs per day) X (years
smoked). Physical activity was calculated on the basis of
minutes of exercise per week [24] and was classified as
ideal(=75 min of vigorous activity or 2150 min of moder-
ate activity per week), intermediate(1-74 min of vigorous
activity or 1-149 min of moderate activity per week) and
poor(0 min of moderate or vigorous activity per week)
[25]. Sleep disorder was defined as “Ever been told by a
doctor or other health professional that you have a sleep
disorder”.

Regularized partial correlation network

Regularized partial correlation network was used to mea-
sure the degree of association between two environmen-
tal chemicals while controlling for the influence of other
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chemicals [26]. The nodes of this network represented
different environmental chemicals, and the edge weights
represented the partial correlation coefficients. Blue
edges indicated positive correlations, while red edges
indicated negative correlations.

Machine learning algorithms

8 machine learning algorithms were applied in this study,
including Generalized Linear Model with Elastic Net
Regularization (GLMNET), Support Vector Machine
(SVM), Random Forest (RF), Kernel K-Nearest Neigh-
bor (KKNN), Random Tree (RT), Neural Network (NN),
Naive Bayes (NB) and Tree bag (TB). All of the 41 charac-
teristics were included in the prediction model, including
23 environmental chemicals and 18 other covariates. In
the training set, each algorithm performed a grid search
and 5-fold cross-validation to select the best independent
variables and hyperparameters. Then, the test set was
used to evaluate the generalization ability and perfor-
mance of the models. According to the proposal, we cal-
culated the average accuracy, precision, recall, F1 score
and AUC for the 5 imputed datasets to measure the per-
formance of the classifiers.

In addition, we used the ‘caret’ package in R to evaluate
the contribution of each variable to the predictive model.
Specifically, we applied the ‘varImp’ function, which
automatically calculates importance scores based on the
impact of each variable on the model’s predictions. Vari-
ables with higher scores contribute more to the model.
These scores were then used to create bar charts that
visually display the relative importance of each variable.

Identify characteristics that affect blood pressure

When analyzing factors that influence blood pressure
levels, all participants taking antihypertensive medica-
tion were excluded due to the significant effect of these
drugs on blood pressure. Systolic and diastolic blood
pressure values were separated by percentiles to inves-
tigate whether the intensity of environmental exposure
changed with different blood pressure levels. Principal
component analysis (PCA) was used to investigate the
association between environmental chemicals and blood
pressure by converting the raw high-dimensional data
into two dimensions, with the first two principal com-
ponents (PC1 and PC2) visualising the relative positions
and distributions between the different blood pressure
groups. Permutational multivariate analysis of variance
(PERMANOVA) was used to test the statistical signifi-
cance of the association between chemical distribution
and levels of SBP and DBP.

In addition, linear regression was used to identify envi-
ronmental chemicals that changed significantly with
changes in blood pressure (In-transformed intensity). All
other factors included in the analysis were adjusted for as
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covariates, including gender, age, ethnicity, family PIR,
education level, BMI, diet, smoking, pack-years, alcohol
intake, sleep disturbance and physical activity level.

Statistic analysis
All statistics were performed with R version 4.2.3 and a
two-tailed p<0.05 was considered statistically different.

Result

Baseline characteristics of participants

Our study ultimately included 11,039 participants, of
whom 4739 (43%) were diagnosed with hypertension.
2978 (63%) of the hypertensive patients were taking
antihypertensive drugs. The mean SBP and DBP were
121.3 (111.3, 134.0) mmHg and 70.7 (62.7, 77.3) mmHg,
respectively. The general characteristics and the distri-
bution of the environmental chemicals can be viewed in
Table 1. The relative stability of chemical concentrations
over the years is shown in Figure S2. Moreover, multiple
imputation performed well (Table S2) and there was no
statistical difference between the characteristics of the
original data and the imputed datasets (p>0.05).

Correlation network among environmental chemicals

We performed a regularized biased correlation network
with the 23 environmental chemicals mentioned above.
As we can see (Fig. 1), most of the environmental chemi-
cals in the same category clustered together and were
positively correlated, suggesting that the chemicals may
act as a group rather than individually. Most of the chem-
icals showed low correlation, for example, cadmium and
lead (r=0.24, P<0.05), while a few exhibited high correla-
tion, such as P03 and P04 (r=0.75, P<0.05).

Performance of machine learning model for predicting
hypertension

According to the results shown in Table 2, GLMNET and
SVM were able to predict hypertension relatively accu-
rately with AUCs of 0.821 and 0.822, respectively, while
NB wasless effective with AUCs of 0.769.

Taking both AUC and characteristic importance into
account, the SVM algorithm performed best. The accu-
racy, precision, recall and F1 scores of SVM were 0.751,
0.699, 0.717 and 0.708, respectively. Figure 2A showed
the top 12 contributors to the model. Among them, the
top 3 contributors were age, waist circumference and
BMI, while the chemicals that contributed most to the
prediction of hypertension were Pb, P10, and MHP. We
also found that the total contribution of each chemi-
cal category played a relatively important role in the
model. PAEs, PAHs, elements and phenols accounted for
5.8%, 6.1%, 6.9%, 2.6% of the total contribution, respec-
tively (Fig. 2C). In addition, the AUCs of the training
and test sets were 0.819 and 0.822, respectively (Fig. 2B),
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indicating that the SVM model achieved relatively good
prediction of hypertension without overfitting

Associations between environmental chemicals and blood
pressure
PCA showed association between chemicals and SBP,
DBP. And PERMANOVA revealed a statistically signifi-
cant difference in the change in intensity of environmen-
tal chemicals as SBP and DBP levels changed (»<0.01 for
both SBP and DBP) (Fig. 3A-B). Linear regression was
used to further investigate the environmental chemicals
that changed most significantly with blood pressure lev-
els. Figure 3 C-D showed that MHH, P25 and MNP were
positively associated with changes in SBP; MHH, P06, Cd
and Pb were positively associated with changes in DBP.
Linear regression models were developed to predict
SBP and DBP levels, but the model performed poorly.
The R? for predicting SBP was 0.28 and 0.25 in the train-
ing and test sets, respectively, and the R? for predicting
DBP was 0.06, 0.05, respectively (Fig. 4).

Discussion
Hypertension is the most important modifiable risk fac-
tor for all-cause mortality worldwide [9]. Investigation
of the underlying risk factors for hypertension can be of
great help in the prevention and control of the disease.
In this study, we investigated the association between
environmental chemicals and hypertension, identifying
several significantly relevant environmental chemicals
(e.g., Pb). Furthermore, with a machine learning-based
prediction model, we not only achieved relatively accu-
rate predictions of hypertension (binary outcome), but
also identified significant contributions of environmental
chemicals to the prediction of hypertension. However,
the linear model was not a satisfactory predictor for con-
tinuous outcomes (systolic and diastolic blood pressure).

Exposure to environmental chemicals is unavoidable as
they are commonly found in air, water and daily supplies.
Many studies have demonstrated the relevance of envi-
ronmental chemicals and hypertension, in both adults
and children [27, 28]. Nevertheless, only a limited num-
ber of studies have examined the predictive value of these
factors for hypertension [29, 30]. The majority of these
studies have focused on the correlation between a single
chemical element or a class of chemical elements and
hypertension, which can increase the risk of hyperten-
sion [31]. Nevertheless, it remains unclear whether the
combined effect of multiple type of environmental chem-
icals in the human body will be additive, antagonistic, or
whether they will exert their influence on blood pressure
individually.

Our study focused on the prediction of hyperten-
sion using multiple environmental chemicals. There-
fore, we built 8 machine learning-based models, most
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Table 1 Characteristics of the total participants
Characteristics Total Training set Test set Pvalue
(n=7728) (n=3311)
Hypertension (%) 0.26
no 6300 (57) 4383 (57) 1917 (58)
yes 4739 (43) 3345 (43) 1394 (42)
Current use of antihypertensive drugs (%)
no 8061 (73)
yes 2978 (27)
SBP (mmHg) 121.3(111.3,134.0) 121.3(111.33,134.0) 122.0(111.3,134.0) 067
DBP (mmHg) 70.7 (62.7,77.3) 70.7 (62.7,77.3) 70.0(62.7,77.3) 0.34
All covariates
Gender (%) 035
male 5515 (50) 3838 (50) 1677 (51)
female 5524 (50) 3890 (50) 1634 (49)
Race or ethnicity (%) 042
Hispanic 2741 (25) 1894 (25)667 (9) 847 (26)
Non-Hispanic white 4894 (44) 3434 (44) 1460 (44)
Non-Hispanic Black 2373 (21) 1687 (22) 686 (21)
Other race 1031 (9) 713 (9) 318 (10)
Education level (%) 0.25
Less than 9th grade 1234 (11) 843 (11) 391 (12)
9-11th grade 1635 (15) 1150 (15) 485 (15)
High school graduate 2578 (23) 1787 (23) 791 (24)
Some college or AA degree 3168 (29) 2212 (29) 956 (29)
College graduate or above 2424 (22) 1736 (22) 688 (21)
Physical activity (%) 0.72
poor 6240 (57) 4381 (57) 1859 (56)
intermediate 1391 (13) 979 (13) 412(12)
ideal 3408 (31) 2368 (31) 1040 (31)
Smoking (%) 031
never 5957 (54) 4195 (54) 1762 (53)
ever 5082 (46) 3533 (46) 1549 (47)
Smoking pack-years 0(0,7.5) 0(0,7) 0(0, 8.65) 0.06
Sleep disorders, n (%) 0.32
yes 2735 (25) 1936 (25) 799 (24)
no 8304 (75) 5792 (75) 2512 (76)
Agel(years) 49 (34, 64) 49 (34, 64) 49 (34, 64) 0.79
Family PIR 2.1(1.1,4.0) 2.1(1.1,4.0) 2.1(1.1,4.0) 033
BMI (kg/m?) 28.0(243,324) 28.0(24.3,324) 28.1(24.3,32.6) 097
Waist(cm) 97.8(87.7,108.9) 97.9 (87.6,108.9) 97.5(87.9,108.8) 0.86
Total energy intake (kcal) 1908.5 (1470.75, 2500.5) 1915 (1479, 2504.12) 1891.5 (1452.75, 2480.5) 0.20
potassium intake(mg) 2458 (1855, 3164) 2457.5(1856.25,3171.5) 24585 (1853.75,3147.25) 0.81
sodium intake(mg) 3123 (2321.5,4097) 3129.5 (2329, 4089.62) 3103.5 (2289.5,4102.75) 0.28
protein intake(q) 74.61(55.71,98.14) 7449 (56.1,98.53) 7481 (54.84,97.16) 0.16
Carbohydrate intake(g) 232.57 (174.39,305.19) 23249 (17546,304.11) 232.61(172.4,307.63) 0.64
Fat intake (g) 70.6 (50.23,97.24) 70.84 (50.74,97.39) 69.79 (48.76,96.51) 0.09
Alcohol intake (g) 00,7 0(0,6.48) 00,7 024
Environmental chemicals
Hg_log (ug/L) -0.11 (-0.73,0.58) -0.11 (-0.73,0.58) -0.12 (-0.73,0.58) 087
Pb_log (ug/dL) 0.27 (-0.17,0.74) 0.27 (-0.16,0.74) 0.28(-0.17,0.73) 0.78
Cd_log (ug/L) -1.05 (-1.51,-0.49) -1.08 (-1.56,-0.49) -1.05 (-1.51,-0.46) 0.34
PO1_log (ng/L) 7.57 (6.67,8.83) 7.58 (6.68, 8.84) 7.55 (6.65,8.79) 0.6
P02_log (ng/L) 826 (7.43,9.14) 8.26 (741,9.15) 826 (7.46,9.12) 0.69
P03_log (ng/L) 44 (3.69, 5.53) 441 (3.69, 5.54) 4.39(3.69, 5.52) 0.26
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Table 1 (continued)
Characteristics Total Training set Test set Pvalue
(n=7728) (n=3311)
P04_log (ng/L) 543 (4.74,6.39) 544 (4.74,6.39) 54(4.74,6.38) 0.34
P06_log (ng/L) 4.86 (4.25,5.5) 487 (4.25,5.5) 4.85 (4.24,549) 044
P10_log (ng/L) 457 (3.87,5.33) 457 (3.87,5.34) 455 (3.83,5.31) 0.49
P25_log (ng/L) 494 (4.3,5.63) 495 (4.3,5.64) 493 (4.32,5.62) 0.7
BPA_log (ng/mL) 047 (-0.22,1.16) 047 (-0.22,1.16) 047 (-0.36, 1.16) 042
BP3_log (ng/mL) 2.52(1.34,4.06) 2.51(1.31,4.09) 2.53(1.36,4.01) 0.96
TCS_log (ng/mL) 2.07 (0.53,3.84) 2.1(0.59,3.9) 2(0.49,3.74) 0.08
MBP_log (ng/mL) 2.68(1.89,3.38) 2.68(1.87,3.36) 2.68(1.92,342) (AN
MEP_log (ng/mL) 423 (3.18,5.38) 4.25(3.17,537) 4.2(3.18,542) 0.69
MHP_log (ng/mL) 041 (-042,1.28) 0.41(-0.37,1.25) 041 (-049,1.31) 0.51
MNP_log (ng/mL) -0.14 (-0.45, 0.09) -0.14 (-0.45, 0.09) -0.14 (-0.45, 0.09) 0.69
MZP_log (ng/mL) 1.74(0.83, 2.58) 1.74(0.83,2.59) 1.74(0.86, 2.57) 0.76
MC1_log (ng/mL) 0.74(-0.11, 1.52) 0.74 (-0.11,1.53) 0.74(-0.11,1.5) 0.66
MHH_log (ng/mL) 243(1.63,3.22) 242(1.61,3.2) 246 (1.65,3.27) 0.13
MOH_log (ng/mL) 1.96 (1.16, 2.73) 1.95(1.16,2.72) 1.99 (1.19,2.77) 0.13
MIB_log (ng/mL) 1.96 (1.19,2.64) 1.95(1.16, 2.66) 2(1.25,262) 0.2
ECP_log (ng/mL) 2.86(2.1,3.63) 2.85(2.1,3.61) 2.88(2.12,3.68) 0.18

Notes: normally distributed continuous variables: meantstandard deviation; non-normally distributed continuous variables: median (interquartile range);
categorical variables: percentages. And the numerical values of all chemical elements were represented using logarithmic values with base e

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; PIR: poverty-income ratio; BMI: body max index

Elements
PAHs
Phenols
PAEs

©C ® @ @

Fig. 1 Regularized partial correlation network. Edge weights represented partial correlation coefficients. Blue edges indicated positive correlations, while
red edges indicated negative correlations
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Table 2 Performance of 8 algorithms to predict hypertension

Algorithms  Accuracy Precision Recall F1score AUC
SVM 0.751 0.699 0.717 0.708 0.822
GLMNET 0.754 0711 0.702 0.706 0.821
NN 0.751 0.695 0.727 0711 0.819
RF 0.753 0.703 0.715 0.709 0.810
8B 0.742 0.693 0.695 0.694 0.799
KKNN 0.725 0.723 0.561 0.632 0.792
NB 0.716 0.646 0.723 0.682 0.769
RT 0.743 0.697 0.689 0.693 0.793

All values above were the average of each algorithm over 5 imputed datasets

Abbreviations: AUC: area under curve; SVM: support vector machine; GLMNET:
generalized linear model with elastic-net regularization; NN: neural network;
RF:random forest; TB: tree bag; KKNN: kernel K-nearest neighbor algorithm; NB:
naive bayes; RT: random tree

of which achieved good predictions, demonstrating the
high potential and feasibility of machine learning for
hypertension prediction. Then, taking into account the

A
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performance and interpretability of the models, the SVM
was selected for further analysis.

On the basis of model contribution, the top 3 environ-
mental chemicals for predicting hypertension were Pb,
P10, and MHP. The possible mechanisms by which they
cause hypertension are discussed below. Previous stud-
ies have shown that Pb causes hypertension by induc-
ing vasoconstriction (alpha adrenergic receptors) and
regulating the production of renin and angiotensin [32].
Besides, prolonged exposure to PAH is associated with
oxidative stress. The resulting vasoconstriction and endo-
thelial cell dysfunction are thought to be the mechanism
responsible for the increase in blood pressure [33]. In
the case of phthalates, studies have found that they may
affect blood pressure through a variety of mechanisms.
These include impairment of endothelial function and
interference with the renin-angiotensin system [34, 35].
The above studies suggest that environmental chemicals

Age

Waist

BMI

Pb

Sleep disorder-
Carbohydrate intake
Total energy intake
Smoking pack-year-

True Pos(;tive Rate
o
o

0.25
P10 AUC of training set=0.819
Protein intake AUC of test set=0.822
0 25 075 100 0.00 0.25 0.50 0.75 1.00
Contribution False Positive Rate
o
TT% 4829 Category
Behavior PAHs
0
1296& Demography Phenols
382% contribUtion 61% Dietary Socioeconomic
5.3% Elements Waist and BMI
6-“ 7 PAEs
127%

Fig.2 Performance of the SYM model. (A) Contribution of characteristics to the prediction of hypertension. (B) AUC of training and test sets for hyperten-
sion prediction in SVM model. (C) Contribution of each category of characteristics to the prediction of hypertension
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Fig. 3 Association of systolic and diastolic blood pressure with environmental chemicals. (A-B) PCA was used to assess the association between elevated
blood pressure and environmental chemicals. (C-D) Linear regression to identify chemicals significantly associated with elevated blood pressure (P <0.05)

are involved in the progression of hypertension and par-
tially illustrate the predictive value of environmental
chemicals for hypertension.

In addition, our study found that there was often a
positive correlation between chemicals in the same cat-
egory, such as Pb and Cd. It is possible that they have a
synergistic effect on blood pressure, but this needs to be
investigated further. Similarly, Juhua Luo’s previous study
showed that metal mixtures had a greater effect on kid-
ney function than single metal [36].

In line with previous studies, traditional risk factors
also made a significant contribution to the prediction
of hypertension [37]. These included the non-modifi-
able risk factors: sex, age and race, and the modifiable
risk factors: dietary, behavior, waist circumference and
BMI. In addition, we also found that the combination
of BMI and waist circumference was a better predictor
of obesity-related hypertension [38].

In another place, when the study outcome was changed
from hypertension or not to systolic and diastolic blood
pressure, we also excluded patients taking antihyperten-
sive medication. This may have led to a change in the
environmental chemicals affecting the two outcomes, but

we felt it was necessary because of the dramatic effect of
antihypertensive medication on blood pressure. This may
partly explain why the three most contributing environ-
mental chemicals in the SVM model, Pb, and P10, also
had an effect on SBP or DBP in the linear regression,
whereas MHP had no effect on them.

Our study had several strengths. First, we applied
multiple imputation to deal with missing values, which
was a widely accepted and effective approach. Multi-
ple imputation allows for the full use of available data,
reducing bias caused by missing values and improv-
ing the reliability of the results. Second, we used sev-
eral categories of environmental chemicals to predict
hypertensive individuals, which provided a new per-
spective on hypertension prediction. Finally, we per-
formed several machine learning-based prediction
models, and most of them achieved good hypertension
prediction.

However, there were some limitations of this study.
First, our sample coverage may have been limited,
which may have prevented us from capturing the
effects of environmental pollution on hypertension in
certain areas or in certain populations. Second, this
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Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; RMSE: root mean square error

was a cross-sectional study and could not really explain
the long-term effects of environmental chemical expo-
sure on individual blood pressure, which needs to be
confirmed by further cohort studies. Third, due to
database limitations, the effect of genetic factors (e.g.
family history of hypertension) on blood pressure was
not taken into account. Finally, the multiple imputa-
tion model was applied to the entire dataset to handle
missing values, including both the training and testing
sets. While this approach enhances data completeness,
it may also introduce the potential risk of information
leakage, potentially leading to an overestimation of the
model’s performance.

Conclusion

By analysing NHANES data from 2003 to 2016, the
machine learning-based prediction model showed that
environmental chemicals could predict hypertension
with relative accuracy. The SVM algorithm showed that
Pb, P10, and MHP were the main environmental factors

predicting hypertension. Our study suggests that the role
of environmental chemical exposures in hypertension
cannot be ignored.
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