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Abstract
Background Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And 
persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney 
disease. There are many risk factors that lead to hypertension, including various environmental chemicals that 
humans are exposed to, which are believed to be modifiable risk factors for hypertension.

Objective To investigate the role of environmental chemical exposures in predicting hypertension.

Methods A total of 11,039 eligible participants were obtained from NHANES 2003–2016, and multiple imputation 
was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied 
to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision 
score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and 
diastolic blood pressure levels.

Results All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the 
best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, 
respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for 
diastolic blood pressure.

Conclusions In this study, relatively accurate prediction of hypertension was achieved using environmental 
chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for 
hypertension.
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Background
Hypertension, a common cardiovascular disease [1, 2] 
with a prevalence of approximately 30% in adults, affects 
more than one billion adults worldwide [3, 4]. Persistently 
elevated blood pressure can lead to multiple systemic 
diseases such as stroke, cognitive impairment, coronary 
artery disease, nephropathy and retinopathy [5–8]. How-
ever, it is estimated that more than half of people with 
hypertension are unaware of their condition, and of those 
who are aware, many have poor compliance leading to 
inadequate treatment [9, 10]. Identifying the underlying 
causes can help prevent and control hypertension [11]. 
The etiology of hypertension involves a complex interplay 
of environmental and genetic susceptibilities. Among 
these, uncontrollable factors include age, gender, race, 
etc. Controllable factors include diet, physical activity 
level, obesity, smoking, etc.

In addition, environmental chemicals, as a class of con-
trollable risk factors, have received increasing attention in 
recent years because of the inevitable exposures to them 
in daily life. Much evidence suggested that environmen-
tal chemicals were highly associated with hypertension. 
For example, Xueling Lu’s review indicated that exposure 
to phthalates (PAEs) was a risk factor for hypertension 
[12]. Another paper, based on NHANES database, found 
that high exposure to mercury levels was associated with 
elevated blood pressure and prevalence of hypertension 
[13]. Similarly, Yao Xu found significantly higher Systolic 
(SBP) and diastolic blood pressure (DBP) levels in people 
exposed to high mixtures (Pb, Cd, Hg, As) [14]. More-
over, perfluoroalkyl substances (PFAS) was thought to 
be associated with elevated blood pressure, in both preg-
nant women and the general population [15, 16]. Poly-
cyclic aromatic hydrocarbons (PAHs) and phenols have 
been associated with an increased risk of hypertension 
[17, 18]. Overall, a large number of studies have analyzed 
the association between chemical exposures and the risk 
of hypertension, but few have elucidated the predictive 
role of chemical exposures on hypertension, especially 
when combined with multiple categories of chemical 
exposures.

Machine learning, as a branch of artificial intelligence, 
is becoming increasingly important in the medical field 
due to its ability to handle large, complex and diverse 
data [19]. Compared to traditional predictive models, 
machine learning can not only handle complex data 
types, but also has higher accuracy, greater adaptability 
and intelligence [20].

The importance of early identification of hypertension 
cannot be overlooked, but the predictive role of environ-
mental chemicals on hypertension has not been clarified. 
To explore the association between chemical exposures 
and hypertension, we performed an analysis by using 
NHANES data. In addition, machine learning-based 

predictive models were performed to assess the value of 
multiple categories of environmental chemicals in pre-
dicting hypertension.

Methods
Study population
National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative survey con-
ducted by the National Center for Health Statistics 
(NCHS) aimed at evaluating the health and nutrition sta-
tus of residents in the United States. The survey is pub-
licly available and has obtained ethical approval (https://
www.cdc.gov/nchs/nhanes/irba98.htm). The survey 
includes 5 main categories of data: demographic, dietary, 
examination, laboratory, and questionnaire. In this study, 
we included participants from 2003 to 2016 who under-
went at least one complete blood pressure measurement. 
Participants under 20 years of age, pregnant women, and 
those without urine creatinine were excluded. The envi-
ronmental chemicals of interest were tested in each cycle, 
but not all participants were measured for all 30 environ-
mental chemicals. Therefore, we excluded participants 
who were missing more than 15 environmental chemicals 
to ensure the accuracy and reliability of the study. In the 
end, a total of 11,039 participants were included in the 
study (Figure S1).

Data collection
Our study included participants over 7 NHANES cycles 
from 2003 to 2016. The public data files of the NHANES 
database are freely available for researchers through the 
NCHS website. Demographic data included age, gender, 
race/ethnicity, family poverty-income ratio (PIR), and 
education level. Dietary data included total energy intake, 
protein, carbohydrates, fat intake, alcohol intake, as 
well as potassium and sodium intake. Dietary data were 
obtained using 24-hour dietary recalls. Most participants 
had both day 1 and day 2 recall data and we calculated 
their average; otherwise we used data from one day. 
Questionnaire data included physical activity, smoking 
status, pack-years, and sleep disorders. Examination data 
included blood pressure, waist circumference, and body 
mass index (BMI). A total of 30 environmental chemi-
cals were included in our study as potential predictors of 
hypertension. These included 4 metallic and non-metallic 
elements, 7 PAHs, 6 PFAS, 10 PAEs, and 3 phenols (Table 
S1). Detailed information on the collection of blood and 
urine samples and measurement methods for chemi-
cal substances could be found on the NCHS website. 
Values below the limits of detection (LOD), released by 
the national report on human exposure to environmen-
tal chemicals from the U.S. Centers for Disease Control 
and Prevision (CDC) were imputed as the lowest LOD 
divided by the square root of two (NHANES 2009–2010: 

https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/nhanes/irba98.htm


Page 3 of 11Guo et al. BMC Cardiovascular Disorders          (2024) 24:544 

Phthalates - Urine Data Documentation, Codebook, and 
Frequencies (cdc.gov)). As recommended, urinary creati-
nine was used as a reference to account for urinary dilu-
tion [21].

Data pre-processing
First of all, environmental exposures with missing values 
greater than 50% were excluded from the study, includ-
ing 6 PFAS and As, which could have significant implica-
tion on data analysis. Subsequently, a natural logarithm 
transformation was applied to other 23 environmental 
chemicals to improve their normal distribution. Miss-
ing values were then imputed with multiple imputa-
tion, which is an effective and widely accepted method 
for handling missing values [22, 23]. We performed the 
‘pmm’ methods in the ‘mice’ R package to impute missing 
values and obtained 5 slightly different imputed datasets, 
meaning that their values were not exactly the same, but 
not statistically different. The ‘Predictive Mean Matching’ 
(PMM) algorithm matches the missing value with several 
non-missing observed values, and then randomly selects 
one value from these most matched non-missing values 
to impute, which was used to handle most missing val-
ues. To reduce selection bias, participants were assigned 
to the same training/test fold (70:30) in the 5 imputed 
datasets.

Diagnostic criteria for hypertension and definition of some 
covariates
Participants were diagnosed with hypertension if any of 
the following conditions were met. Mean systolic blood 
pressure ≥ 140 mmHg, mean diastolic blood pressure ≥ 90 
mmHg, self-reported hypertension, and participants tak-
ing antihypertensive medication. The mean blood pres-
sure was the average of at least 1 and at most 3 blood 
pressure values.

Some covariates were defined as described below. 
Smoking status was categorized as never smokers ver-
sus ever smokers. Pack-years, calculated for ever smok-
ers only, were defined as: (packs per day) × (years 
smoked). Physical activity was calculated on the basis of 
minutes of exercise per week [24] and was classified as 
ideal(≥ 75 min of vigorous activity or ≥ 150 min of moder-
ate activity per week), intermediate(1–74 min of vigorous 
activity or 1–149 min of moderate activity per week) and 
poor(0  min of moderate or vigorous activity per week) 
[25]. Sleep disorder was defined as “Ever been told by a 
doctor or other health professional that you have a sleep 
disorder”.

Regularized partial correlation network
Regularized partial correlation network was used to mea-
sure the degree of association between two environmen-
tal chemicals while controlling for the influence of other 

chemicals [26]. The nodes of this network represented 
different environmental chemicals, and the edge weights 
represented the partial correlation coefficients. Blue 
edges indicated positive correlations, while red edges 
indicated negative correlations.

Machine learning algorithms
8 machine learning algorithms were applied in this study, 
including Generalized Linear Model with Elastic Net 
Regularization (GLMNET), Support Vector Machine 
(SVM), Random Forest (RF), Kernel K-Nearest Neigh-
bor (KKNN), Random Tree (RT), Neural Network (NN), 
Naive Bayes (NB) and Tree bag (TB). All of the 41 charac-
teristics were included in the prediction model, including 
23 environmental chemicals and 18 other covariates. In 
the training set, each algorithm performed a grid search 
and 5-fold cross-validation to select the best independent 
variables and hyperparameters. Then, the test set was 
used to evaluate the generalization ability and perfor-
mance of the models. According to the proposal, we cal-
culated the average accuracy, precision, recall, F1 score 
and AUC for the 5 imputed datasets to measure the per-
formance of the classifiers.

In addition, we used the ‘caret’ package in R to evaluate 
the contribution of each variable to the predictive model. 
Specifically, we applied the ‘varImp’ function, which 
automatically calculates importance scores based on the 
impact of each variable on the model’s predictions. Vari-
ables with higher scores contribute more to the model. 
These scores were then used to create bar charts that 
visually display the relative importance of each variable.

Identify characteristics that affect blood pressure
When analyzing factors that influence blood pressure 
levels, all participants taking antihypertensive medica-
tion were excluded due to the significant effect of these 
drugs on blood pressure. Systolic and diastolic blood 
pressure values were separated by percentiles to inves-
tigate whether the intensity of environmental exposure 
changed with different blood pressure levels. Principal 
component analysis (PCA) was used to investigate the 
association between environmental chemicals and blood 
pressure by converting the raw high-dimensional data 
into two dimensions, with the first two principal com-
ponents (PC1 and PC2) visualising the relative positions 
and distributions between the different blood pressure 
groups. Permutational multivariate analysis of variance 
(PERMANOVA) was used to test the statistical signifi-
cance of the association between chemical distribution 
and levels of SBP and DBP.

In addition, linear regression was used to identify envi-
ronmental chemicals that changed significantly with 
changes in blood pressure (ln-transformed intensity). All 
other factors included in the analysis were adjusted for as 
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covariates, including gender, age, ethnicity, family PIR, 
education level, BMI, diet, smoking, pack-years, alcohol 
intake, sleep disturbance and physical activity level.

Statistic analysis
All statistics were performed with R version 4.2.3 and a 
two-tailed p < 0.05 was considered statistically different.

Result
Baseline characteristics of participants
Our study ultimately included 11,039 participants, of 
whom 4739 (43%) were diagnosed with hypertension. 
2978 (63%) of the hypertensive patients were taking 
antihypertensive drugs. The mean SBP and DBP were 
121.3 (111.3, 134.0) mmHg and 70.7 (62.7, 77.3) mmHg, 
respectively. The general characteristics and the distri-
bution of the environmental chemicals can be viewed in 
Table 1. The relative stability of chemical concentrations 
over the years is shown in Figure S2. Moreover, multiple 
imputation performed well (Table S2) and there was no 
statistical difference between the characteristics of the 
original data and the imputed datasets (p > 0.05).

Correlation network among environmental chemicals
We performed a regularized biased correlation network 
with the 23 environmental chemicals mentioned above. 
As we can see (Fig. 1), most of the environmental chemi-
cals in the same category clustered together and were 
positively correlated, suggesting that the chemicals may 
act as a group rather than individually. Most of the chem-
icals showed low correlation, for example, cadmium and 
lead (r = 0.24, P < 0.05), while a few exhibited high correla-
tion, such as P03 and P04 (r = 0.75, P < 0.05).

Performance of machine learning model for predicting 
hypertension
According to the results shown in Table 2, GLMNET and 
SVM were able to predict hypertension relatively accu-
rately with AUCs of 0.821 and 0.822, respectively, while 
NB wasless effective with AUCs of 0.769.

Taking both AUC and characteristic importance into 
account, the SVM algorithm performed best. The accu-
racy, precision, recall and F1 scores of SVM were 0.751, 
0.699, 0.717 and 0.708, respectively. Figure  2A showed 
the top 12 contributors to the model. Among them, the 
top 3 contributors were age, waist circumference and 
BMI, while the chemicals that contributed most to the 
prediction of hypertension were Pb, P10, and MHP. We 
also found that the total contribution of each chemi-
cal category played a relatively important role in the 
model. PAEs, PAHs, elements and phenols accounted for 
5.8%, 6.1%, 6.9%, 2.6% of the total contribution, respec-
tively (Fig.  2C). In addition, the AUCs of the training 
and test sets were 0.819 and 0.822, respectively (Fig. 2B), 

indicating that the SVM model achieved relatively good 
prediction of hypertension without overfitting

Associations between environmental chemicals and blood 
pressure
PCA showed association between chemicals and SBP, 
DBP. And PERMANOVA revealed a statistically signifi-
cant difference in the change in intensity of environmen-
tal chemicals as SBP and DBP levels changed (p < 0.01 for 
both SBP and DBP) (Fig.  3A-B). Linear regression was 
used to further investigate the environmental chemicals 
that changed most significantly with blood pressure lev-
els. Figure 3 C-D showed that MHH, P25 and MNP were 
positively associated with changes in SBP; MHH, P06, Cd 
and Pb were positively associated with changes in DBP.

Linear regression models were developed to predict 
SBP and DBP levels, but the model performed poorly. 
The R2 for predicting SBP was 0.28 and 0.25 in the train-
ing and test sets, respectively, and the R2 for predicting 
DBP was 0.06, 0.05, respectively (Fig. 4).

Discussion
Hypertension is the most important modifiable risk fac-
tor for all-cause mortality worldwide [9]. Investigation 
of the underlying risk factors for hypertension can be of 
great help in the prevention and control of the disease. 
In this study, we investigated the association between 
environmental chemicals and hypertension, identifying 
several significantly relevant environmental chemicals 
(e.g., Pb). Furthermore, with a machine learning-based 
prediction model, we not only achieved relatively accu-
rate predictions of hypertension (binary outcome), but 
also identified significant contributions of environmental 
chemicals to the prediction of hypertension. However, 
the linear model was not a satisfactory predictor for con-
tinuous outcomes (systolic and diastolic blood pressure).

Exposure to environmental chemicals is unavoidable as 
they are commonly found in air, water and daily supplies. 
Many studies have demonstrated the relevance of envi-
ronmental chemicals and hypertension, in both adults 
and children [27, 28]. Nevertheless, only a limited num-
ber of studies have examined the predictive value of these 
factors for hypertension [29, 30]. The majority of these 
studies have focused on the correlation between a single 
chemical element or a class of chemical elements and 
hypertension, which can increase the risk of hyperten-
sion [31]. Nevertheless, it remains unclear whether the 
combined effect of multiple type of environmental chem-
icals in the human body will be additive, antagonistic, or 
whether they will exert their influence on blood pressure 
individually.

Our study focused on the prediction of hyperten-
sion using multiple environmental chemicals. There-
fore, we built 8 machine learning-based models, most 
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Characteristics Total Training set
(n = 7728)

Test set
(n = 3311)

P value

Hypertension (%) 0.26
 no 6300 (57) 4383 (57) 1917 (58)
 yes 4739 (43) 3345 (43) 1394 (42)
Current use of antihypertensive drugs (%)
 no 8061 (73)
 yes 2978 (27)
SBP (mmHg) 121.3 (111.3, 134.0) 121.3 (111.33, 134.0) 122.0 (111.3, 134.0) 0.67
DBP (mmHg) 70.7 (62.7, 77.3) 70.7 (62.7, 77.3) 70.0 (62.7, 77.3) 0.34
All covariates
Gender (%) 0.35
 male 5515 (50) 3838 (50) 1677 (51)
 female 5524 (50) 3890 (50) 1634 (49)
Race or ethnicity (%) 0.42
 Hispanic 2741 (25) 1894 (25)667 (9) 847 (26)
 Non-Hispanic white 4894 (44) 3434 (44) 1460 (44)
 Non-Hispanic Black 2373 (21) 1687 (22) 686 (21)
 Other race 1031 (9) 713 (9) 318 (10)
Education level (%) 0.25
 Less than 9th grade 1234 (11) 843 (11) 391 (12)
 9–11th grade 1635 (15) 1150 (15) 485 (15)
 High school graduate 2578 (23) 1787 (23) 791 (24)
 Some college or AA degree 3168 (29) 2212 (29) 956 (29)
 College graduate or above 2424 (22) 1736 (22) 688 (21)
Physical activity (%) 0.72
 poor 6240 (57) 4381 (57) 1859 (56)
 intermediate 1391 (13) 979 (13) 412 (12)
 ideal 3408 (31) 2368 (31) 1040 (31)
Smoking (%) 0.31
 never 5957 (54) 4195 (54) 1762 (53)
 ever 5082 (46) 3533 (46) 1549 (47)
Smoking pack-years 0 (0, 7.5) 0 (0, 7) 0 (0, 8.65) 0.06
Sleep disorders, n (%) 0.32
 yes 2735 (25) 1936 (25) 799 (24)
 no 8304 (75) 5792 (75) 2512 (76)
Age(years) 49 (34, 64) 49 (34, 64) 49 (34, 64) 0.79
Family PIR 2.1 (1.1, 4.1) 2.1 (1.1, 4.1) 2.1 (1.1, 4.1) 0.33
BMI (kg/m2) 28.0 (24.3, 32.4) 28.0 (24.3, 32.4) 28.1 (24.3, 32.6) 0.97
Waist(cm) 97.8 (87.7, 108.9) 97.9 (87.6, 108.9) 97.5 (87.9, 108.8) 0.86
Total energy intake (kcal) 1908.5 (1470.75, 2500.5) 1915 (1479, 2504.12) 1891.5 (1452.75, 2480.5) 0.20
potassium intake(mg) 2458 (1855, 3164) 2457.5 (1856.25, 3171.5) 2458.5 (1853.75, 3147.25) 0.81
sodium intake(mg) 3123 (2321.5, 4097) 3129.5 (2329, 4089.62) 3103.5 (2289.5, 4102.75) 0.28
protein intake(g) 74.61 (55.71, 98.14) 74.49 (56.1, 98.53) 74.81 (54.84, 97.16) 0.16
Carbohydrate intake(g) 232.57 (174.39, 305.19) 232.49 (175.46, 304.11) 232.61 (172.4, 307.63) 0.64
Fat intake (g) 70.6 (50.23, 97.24) 70.84 (50.74, 97.39) 69.79 (48.76, 96.51) 0.09
Alcohol intake (g) 0 (0, 7) 0 (0, 6.48) 0 (0, 7) 0.24
Environmental chemicals
Hg_log (ug/L) -0.11 (-0.73, 0.58) -0.11 (-0.73, 0.58) -0.12 (-0.73, 0.58) 0.87
Pb_log (ug/dL) 0.27 (-0.17, 0.74) 0.27 (-0.16, 0.74) 0.28 (-0.17, 0.73) 0.78
Cd_log (ug/L) -1.05 (-1.51, -0.49) -1.08 (-1.56, -0.49) -1.05 (-1.51, -0.46) 0.34
P01_log (ng/L) 7.57 (6.67, 8.83) 7.58 (6.68, 8.84) 7.55 (6.65, 8.79) 0.6
P02_log (ng/L) 8.26 (7.43, 9.14) 8.26 (7.41, 9.15) 8.26 (7.46, 9.12) 0.69
P03_log (ng/L) 4.4 (3.69, 5.53) 4.41 (3.69, 5.54) 4.39 (3.69, 5.52) 0.26

Table 1 Characteristics of the total participants
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Fig. 1 Regularized partial correlation network. Edge weights represented partial correlation coefficients. Blue edges indicated positive correlations, while 
red edges indicated negative correlations

 

Characteristics Total Training set
(n = 7728)

Test set
(n = 3311)

P value

P04_log (ng/L) 5.43 (4.74, 6.39) 5.44 (4.74, 6.39) 5.4 (4.74, 6.38) 0.34
P06_log (ng/L) 4.86 (4.25, 5.5) 4.87 (4.25, 5.5) 4.85 (4.24, 5.49) 0.44
P10_log (ng/L) 4.57 (3.87, 5.33) 4.57 (3.87, 5.34) 4.55 (3.83, 5.31) 0.49
P25_log (ng/L) 4.94 (4.3, 5.63) 4.95 (4.3, 5.64) 4.93 (4.32, 5.62) 0.7
BPA_log (ng/mL) 0.47 (-0.22, 1.16) 0.47 (-0.22, 1.16) 0.47 (-0.36, 1.16) 0.42
BP3_log (ng/mL) 2.52 (1.34, 4.06) 2.51 (1.31, 4.09) 2.53 (1.36, 4.01) 0.96
TCS_log (ng/mL) 2.07 (0.53, 3.84) 2.1 (0.59, 3.9) 2 (0.49, 3.74) 0.08
MBP_log (ng/mL) 2.68 (1.89, 3.38) 2.68 (1.87, 3.36) 2.68 (1.92, 3.42) 0.11
MEP_log (ng/mL) 4.23 (3.18, 5.38) 4.25 (3.17, 5.37) 4.2 (3.18, 5.42) 0.69
MHP_log (ng/mL) 0.41 (-0.42, 1.28) 0.41 (-0.37, 1.25) 0.41 (-0.49, 1.31) 0.51
MNP_log (ng/mL) -0.14 (-0.45, 0.09) -0.14 (-0.45, 0.09) -0.14 (-0.45, 0.09) 0.69
MZP_log (ng/mL) 1.74 (0.83, 2.58) 1.74 (0.83, 2.59) 1.74 (0.86, 2.57) 0.76
MC1_log (ng/mL) 0.74 (-0.11, 1.52) 0.74 (-0.11, 1.53) 0.74 (-0.11, 1.5) 0.66
MHH_log (ng/mL) 2.43 (1.63, 3.22) 2.42 (1.61, 3.2) 2.46 (1.65, 3.27) 0.13
MOH_log (ng/mL) 1.96 (1.16, 2.73) 1.95 (1.16, 2.72) 1.99 (1.19, 2.77) 0.13
MIB_log (ng/mL) 1.96 (1.19, 2.64) 1.95 (1.16, 2.66) 2 (1.25, 2.62) 0.2
ECP_log (ng/mL) 2.86 (2.1, 3.63) 2.85 (2.1, 3.61) 2.88 (2.12, 3.68) 0.18
Notes: normally distributed continuous variables: mean ± standard deviation; non-normally distributed continuous variables: median (interquartile range); 
categorical variables: percentages. And the numerical values of all chemical elements were represented using logarithmic values with base e

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; PIR: poverty-income ratio; BMI: body max index

Table 1 (continued) 
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of which achieved good predictions, demonstrating the 
high potential and feasibility of machine learning for 
hypertension prediction. Then, taking into account the 

performance and interpretability of the models, the SVM 
was selected for further analysis.

On the basis of model contribution, the top 3 environ-
mental chemicals for predicting hypertension were Pb, 
P10, and MHP. The possible mechanisms by which they 
cause hypertension are discussed below. Previous stud-
ies have shown that Pb causes hypertension by induc-
ing vasoconstriction (alpha adrenergic receptors) and 
regulating the production of renin and angiotensin [32]. 
Besides, prolonged exposure to PAH is associated with 
oxidative stress. The resulting vasoconstriction and endo-
thelial cell dysfunction are thought to be the mechanism 
responsible for the increase in blood pressure [33]. In 
the case of phthalates, studies have found that they may 
affect blood pressure through a variety of mechanisms. 
These include impairment of endothelial function and 
interference with the renin-angiotensin system [34, 35]. 
The above studies suggest that environmental chemicals 

Table 2 Performance of 8 algorithms to predict hypertension
Algorithms Accuracy Precision Recall F1 score AUC
SVM 0.751 0.699 0.717 0.708 0.822
GLMNET 0.754 0.711 0.702 0.706 0.821
NN 0.751 0.695 0.727 0.711 0.819
RF 0.753 0.703 0.715 0.709 0.810
TB 0.742 0.693 0.695 0.694 0.799
KKNN 0.725 0.723 0.561 0.632 0.792
NB 0.716 0.646 0.723 0.682 0.769
RT 0.743 0.697 0.689 0.693 0.793
All values above were the average of each algorithm over 5 imputed datasets

Abbreviations: AUC: area under curve; SVM: support vector machine; GLMNET: 
generalized linear model with elastic-net regularization; NN: neural network; 
RF: random forest; TB: tree bag; KKNN: kernel K-nearest neighbor algorithm; NB: 
naive bayes; RT: random tree

Fig. 2 Performance of the SVM model. (A) Contribution of characteristics to the prediction of hypertension. (B) AUC of training and test sets for hyperten-
sion prediction in SVM model. (C) Contribution of each category of characteristics to the prediction of hypertension
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are involved in the progression of hypertension and par-
tially illustrate the predictive value of environmental 
chemicals for hypertension.

In addition, our study found that there was often a 
positive correlation between chemicals in the same cat-
egory, such as Pb and Cd. It is possible that they have a 
synergistic effect on blood pressure, but this needs to be 
investigated further. Similarly, Juhua Luo’s previous study 
showed that metal mixtures had a greater effect on kid-
ney function than single metal [36].

In line with previous studies, traditional risk factors 
also made a significant contribution to the prediction 
of hypertension [37]. These included the non-modifi-
able risk factors: sex, age and race, and the modifiable 
risk factors: dietary, behavior, waist circumference and 
BMI. In addition, we also found that the combination 
of BMI and waist circumference was a better predictor 
of obesity-related hypertension [38].

In another place, when the study outcome was changed 
from hypertension or not to systolic and diastolic blood 
pressure, we also excluded patients taking antihyperten-
sive medication. This may have led to a change in the 
environmental chemicals affecting the two outcomes, but 

we felt it was necessary because of the dramatic effect of 
antihypertensive medication on blood pressure. This may 
partly explain why the three most contributing environ-
mental chemicals in the SVM model, Pb, and P10, also 
had an effect on SBP or DBP in the linear regression, 
whereas MHP had no effect on them.

Our study had several strengths. First, we applied 
multiple imputation to deal with missing values, which 
was a widely accepted and effective approach. Multi-
ple imputation allows for the full use of available data, 
reducing bias caused by missing values and improv-
ing the reliability of the results. Second, we used sev-
eral categories of environmental chemicals to predict 
hypertensive individuals, which provided a new per-
spective on hypertension prediction. Finally, we per-
formed several machine learning-based prediction 
models, and most of them achieved good hypertension 
prediction.

However, there were some limitations of this study. 
First, our sample coverage may have been limited, 
which may have prevented us from capturing the 
effects of environmental pollution on hypertension in 
certain areas or in certain populations. Second, this 

Fig. 3 Association of systolic and diastolic blood pressure with environmental chemicals. (A-B) PCA was used to assess the association between elevated 
blood pressure and environmental chemicals. (C-D) Linear regression to identify chemicals significantly associated with elevated blood pressure (P < 0.05)
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was a cross-sectional study and could not really explain 
the long-term effects of environmental chemical expo-
sure on individual blood pressure, which needs to be 
confirmed by further cohort studies. Third, due to 
database limitations, the effect of genetic factors (e.g. 
family history of hypertension) on blood pressure was 
not taken into account. Finally, the multiple imputa-
tion model was applied to the entire dataset to handle 
missing values, including both the training and testing 
sets. While this approach enhances data completeness, 
it may also introduce the potential risk of information 
leakage, potentially leading to an overestimation of the 
model’s performance.

Conclusion
By analysing NHANES data from 2003 to 2016, the 
machine learning-based prediction model showed that 
environmental chemicals could predict hypertension 
with relative accuracy. The SVM algorithm showed that 
Pb, P10, and MHP were the main environmental factors 

predicting hypertension. Our study suggests that the role 
of environmental chemical exposures in hypertension 
cannot be ignored.
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