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Abstract 

Background Late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMR) is a valuable cardio-
vascular imaging technique. Segmentation of cardiac chambers from LGE-CMR is a fundamental step in electrophysi-
ological modeling and cardiovascular disease diagnosis. Deep learning methods have demonstrated extremely 
promising performance. However, excellent performance often depended on a large amount of finely annotated 
data. The purpose of this manuscript was to develop a semi-supervised segmentation method to use unlabeled data 
to improve model performance.

Methods This manuscript proposed a semi-supervised network that integrates triple-consistency constraints 
(data-level, task-level, and feature-level) for cardiac chambers segmentation from LGE-CMR. Specifically, we designed 
a network that integrated segmentation and edge prediction tasks based on the mean teacher architecture. This 
addressed the problem of ignoring some challenging regions because of excluding low-confidence regions of previ-
ous research. We also applied a voxel-level contrastive learning strategy to achieve feature-level consistency, helping 
the model pay attention to the consistency between features overlooked in previous research.

Results In terms of the Dice, Jaccard, Average Surface Distance (ASD), and 95% Hausdorff Distance (95HD) met-
rics, for the atrial segmentation dataset, the proposed method achieved scores of 88.34%, 79.30%, 7.92, and 2.02 
when trained with 10% labeled data, and 90.70%, 83.09%, 6.41, and 1.72 when trained with 20% labeled data. 
For the ventricular segmentation task, the results were 87.22%, 77.95%, 2.27, and 0.61 with 10% labeled data, 
and 88.99%, 80.45%, 1.87, and 0.51 with 20% labeled data, respectively.

Conclusion Experiments demonstrated that our method outperforms previous semi-supervised methods, showing 
the potential of the proposed network for semi-supervised segmentation problems.
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Introduction
Late gadolinium enhancement cardiac magnetic reso-
nance imaging (LGE-CMR) is a distinctive imaging tech-
nique in cardiovascular examination. LGE-CMR is a 
widely available tool for displaying and quantifying areas 
of fibrosis and infarction pathology, as gadolinium con-
trast agents can reveal irreversible myocardial injury and 
fibrotic changes [1]. Automatic segmentation of the car-
diac chambers and lesion regions from LGE-CMR is crit-
ical in many clinical applications. Accurate segmentation 
results are the foundation for diagnosing cardiac diseases 
and reconstructing cardiac models, which provide essen-
tial anatomical information for exploring the pathophysi-
ological mechanisms of cardiac diseases [2–5]. However, 
segmenting the atria and ventricles from LGE-CMR faces 
two challenges. First, the morphological characteristics 
of the atria, ventricles, and cavity sizes pose interpa-
tient variations [6–8]. Second, while gadolinium contrast 
agents enhance the contrast between lesions and nor-
mal tissues, they can also result in the blurring of organ 
boundaries (myocardial tissue) or simultaneous high-
intensity regions in adjacent septa of the cavity, leading to 
relatively poor image quality [9]. Both of these situations 
increase the difficulty of LGE-CMR segmentation.

In recent years, the development of medical image seg-
mentation has been greatly facilitated by the emergence 
of deep learning, particularly the introduction of U-Net 
[10] and V-Net [11] architectures. For example, a two-
stage method was employed to fully automate the left 
atrium (LA) segmentation [12]. Firstly, Otsu’s method 
was used for left atrium localization, followed by fine seg-
mentation using the U-Net. Despite the high variability 
of LA anatomy, accurate predictions were still achieved. 
Similarly, a 3D fully convolutional network was used for 
automatic left atrium segmentation from LGE-CMR [13]. 
The model consisted of two convolutional neural net-
works, the first aimed at coarse segmentation for target 
localization and the second performing fine segmenta-
tion within the localized region. This method ranked 
first in the 2018 Left Atrial Segmentation Challenge [14], 
surpassing other traditional approaches such as atlas reg-
istration [15] and shape modeling [16]. Automated meth-
ods, particularly deep learning-based approaches, have 
seen increasing adoption in the analysis of ventricular 
magnetic resonance images. For example, the research 
[17] proposed an automatic segmentation method com-
bining a Rician-Gaussian mixture model and morpho-
logical watershed techniques, effectively segmenting scar 
regions in the myocardium and distinguishing between 
boundary zone and core scar. Another study [18] 
designed a hybrid segmentation framework that inte-
grated traditional computer vision techniques with deep 
learning pipelines such as multi-atlas approaches, U-Net, 

and CycleGAN. By leveraging human intervention to 
combine the strengths of both approaches, this method 
achieved automatic segmentation of left ventricles with 
scars from LGE-MR images. Additionally, deep learning-
based methods have demonstrated exceptional perfor-
mance in various ventricular segmentation challenges. In 
the multi-sequence cardiac MR segmentation challenge 
[19], deep leaning models that incorporated multi-modal 
information, such as LGE-CMR and T2-weighted CMR, 
significantly improved the accuracy of cardiac structure 
segmentation. Similarly, in the M&Ms challenge [20], 
U-Net and its variants emerged as the top-performing 
models overall. These advancements underscore the pro-
gress made by deep learning-based segmentation meth-
ods in improving segmentation performance. However, 
these powerful segmentation networks rely heavily on 
the availability of a substantial amount of finely anno-
tated training data. Nonetheless, high-quality annotated 
medical images are precious as they require related 
expertise, and the quality of the images largely depends 
on clinical experience. To reduce the cost of annotations, 
recent research has explored the use of unsupervised and 
weakly supervised approaches for cardiac segmentation. 
For instance, one study [21] proposed an unsupervised 
ventricular segmentation algorithm for LGE-CMR. This 
method transforms readily available Balanced Steady 
State Free Precession (bSSFP) images into synthetic LGE 
images employing CycleGAN. Those synthetic images 
were used to train a segmentation network before being 
applied to real LGE images. Similarly, another study [22] 
introduced an unsupervised segmentation framework 
incorporating intensity and shape constraints to gener-
ate realistic synthetic cardiac images through label-based 
image generation methods. The network was trained with 
these synthetic images alongside unlabeled real images, 
achieving effective cardiac segmentation without manual 
labels. However, those methods depended on the cross-
mode image translation and generation. Alternatively, 
weak-supervision methods have been proposed to reduce 
labeling efforts using weak labels like bounding boxes 
[23] and image-level labels [24]. For example, research-
ers have explored using scribble labels to segment cardiac 
structures [25]. They proposed a ShapePU network and 
leveraged constraints on the unlabeled pixels to enhance 
ventricular segmentation performance. But, collecting 
these weak labels still requires additional human effort. 
Therefore, this manuscript proposed to segment LGE-
CMR through semi-supervised learning with a small 
amount of labeled data and a large amount of unlabeled 
data. This approach aimed to assist algorithms in achiev-
ing superior performance.

Semi-supervised learning mainly refers to two issues, 
which are the generalization of knowledge learned from 
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limited labeled data to unlabeled data(e.g., pseudo-labe-
ling [26]) and the direct learning based on a large amount 
of unlabeled data(e.g., entropy minimization [27] and 
consistency constraints [28–30]). Pseudo-labeling is a 
simple and intuitive method that utilizes the model’s pre-
dictions to generate pseudo-labels for unlabeled data, 
which are then combined with the labeled data for train-
ing. The advantage of pseudo-labeling is its simplicity 
and ease of implementation, but it can introduce noise 
in the segmentation outputs of under-trained models. 
Pseudo-labels with noise contained can lead to incorrect 
knowledge for model learning [31]. In particular, pseudo-
labels that are “confident but wrong” can make the train-
ing process unstable and result in negative optimization 
of the model. Therefore, accurately generating pseudo-
labels and handling the noise in pseudo-labels are the 
key focuses of pseudo-labeling methods. Some research-
ers attempted to generate pseudo-labels based on fea-
ture similarity from a reference library [31] or applied a 
simple thresholding method to select regions with high 
confidence as pseudo-labels [32]. Entropy minimization 
constraints aim to reduce the overlap of class probabil-
ity distributions by minimizing the entropy of unlabeled 
data, thereby encouraging the model to make low entropy 
(high confidence) predictions for unlabeled data [27]. 
Due to its simplicity, entropy minimization, often used as 
a regularization term, is combined with a supervised loss 
function or other semi-supervised losses to form a hybrid 
loss function [33]. Consistency constraints typically 
introduce perturbations through data augmentation on 
unlabeled data. The perturbed and unperturbed data are 
then separately input to the model, aiming for consist-
ent prediction results on a differently perturbed version 
[34]. This method is more flexible and integrates various 
design principles for semi-supervised models within the 
same framework. Therefore, this study primarily utilizes 
consistency regularization methods to leverage unlabeled 
data for atrial and ventricular segmentation tasks.

There are multiple implementation approaches for 
consistency constraints, and one common approach 
is based on a multi-task network [35, 36]. For example, 
the level set function prediction task was introduced to 
impose shape constraints [36]. They argued that differ-
ent branches focus on different scales of information due 
to specific tasks, and the different focuses of each task 
branch can lead to perturbations, thus achieving con-
sistency regularization among tasks. Another common 
approach is the mean teacher architecture [37–39]. The 
teacher and student networks share some or all of the 
parameters. Distance metrics such as mean squared error 
or divergence metrics such as KL divergence can be used 
to measure the difference between the outputs of the 
teacher network and student network, which is then used 

to enforce consistency between the predictions, thereby 
achieving semi-supervised learning. In previous work, 
researchers supposed potential unreliability or noise 
region existed in the teacher network’s predictions when 
calculating consistency through the mean teacher model. 
To address this issue, they employed methods such as 
Monte Carlo dropout [38], setting rules for uncertain 
regions [37], and error localization subnetworks [40] to 
exclude low-confidence regions and only compute con-
sistency loss in high-confidence regions. However, these 
low-confidence regions often correspond to challeng-
ing areas such as the edges of cardiac chambers and the 
junctions between chambers and vessels [41]. We believe 
that discarding these low-confidence regions may have a 
negative impact, especially for unique imaging modali-
ties, such as LGE-CMR, where the anatomical struc-
tures of the atria can be blurred due to the presence of 
gadolinium contrast agents. Neglecting these low-confi-
dence regions would not be beneficial for segmentation. 
In summary, this manuscript identifies the following 
issues in current research: (1) The methods related to the 
mean teacher model often use confidence maps to filter 
out low-confidence regions, which may result in nega-
tive impact. It is worth considering how to impose con-
straints on low-confidence regions. (2) Current research 
often calculates the consistency loss only on the seg-
mentation results. It is necessary to consider imposing 
constraints on the semantic scale. (3) Current methods 
typically calculate consistency constraints under different 
perturbed versions of the same sample without consider-
ing the distribution patterns of the entire dataset. How to 
impose constraints on the overall dataset is also a worth-
while issue to explore.

To address these issues, we proposed a novel semi-
supervised segmentation mean teacher model. Firstly, 
a multi-task network was constructed, consisting of a 
shared encoder for feature extraction and two independ-
ent task-specific output heads to generate segmentation 
probability maps and edge prediction results. The auxil-
iary edge prediction task helped the segmentation branch 
capture more information about border regions, miti-
gating the loss incurred by filtering out low-confidence 
regions during consistency computation. Secondly, on 
the encoder’s output features, a voxel-level contrastive 
learning with a Memory Bank was applied. This design 
not only enforces feature consistency between the origi-
nal image and its perturbed versions but also encour-
ages the model to consider the distribution patterns of 
feature representations for voxels belonging to the same 
or different classes across the entire dataset. Further-
more, a cross-task consistency loss between the segmen-
tation and edge prediction tasks was also developed to 
further exploit the potential of multi-task networks in 
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semi-supervised segmentation. The proposed method 
was evaluated on two publicly available LGE-CMR data-
sets (the 2018 Atria Segmentation Challenge [14] and the 
EMIDEC challenge [42]) for left atrium and left ventri-
cle segmentation experiments. The experimental results 
demonstrated that our model improved the performance 
of cardiac chambers segmentation, which validated the 
effectiveness of our semi-supervised approach.

In summary, this study has three main contributions:

• We proposed a semi-supervised segmentation net-
work incorporating data-level, task-level, and fea-
ture-level consistency constraints. This framework 
allowed the model to effectively leverage unlabeled 
data, which enabled it to achieve better segmentation 
performance.

• This study introduced an edge prediction task within 
the mean teacher model framework. The multi-task 
network architecture enhanced segmentation perfor-
mance by helping the network capture more detailed 
information from the edge region. Additionally, the 
edge prediction task established task-level consist-
ency constraints with the primary segmentation task, 
expanding the ways in which consistency constraints 
are enforced.

• This manuscript implemented a voxel-level contras-
tive learning strategy for feature-level consistency. 
This approach enforced the same category voxel fea-
tures closer together in the feature space while push-
ing apart features from different categories, thus pre-
serving contrastive properties while ensuring feature 
consistency.

Methods
Methods background and design motivation
The mean teacher model has been widely used in semi-
supervised learning tasks [39, 43–45]. Inspired by these 
works, we adopted the mean teacher model as the 
base architecture. The mean teacher model consists of 
two branches: a teacher and a student. The different 

perturbed versions of the same image are input to both 
branches during training. By minimizing the differences 
between the teacher and student outputs, the model 
utilizes unlabeled data for semi-supervised learning. 
This pattern referred to data-level consistency (consist-
ency among data). However, Current semi-supervised 
segmentation methods using the mean teacher model 
typically only compute data-level consistency loss in 
high-confidence regions [38]. To identify the distribu-
tion of low-confidence regions, this study applied Monte 
Carlo dropout to estimate prediction uncertainty which 
was used in previous research [38]. Specifically, we per-
formed multiple forward passes through the teacher 
model with random dropout and added gaussian noise 
for each input volume, calculated softmax probabilities 
for each voxel, and used predictive entropy as a met-
ric to estimate uncertainty and assess the confidence of 
each prediction. As shown in Fig.  1, our analysis of the 
uncertainty map revealed that low-confidence regions 
were predominantly located around object edges, which 
are also areas prone to segmentation errors. To enhance 
the focus on the edge region, this manuscript explicitly 
introduced an edge prediction task to strengthen the 
constraint on the segmentation boundary and designed 
a multi-task network architecture. Different tasks can 
complement each other, allowing the network to focus on 
capturing global semantic information and attending to 
fine-grained details of edge positions.

To further leverage the potential of the edge prediction 
task, inspired by the DTC network [36], this study intro-
duced consistency between the segmentation task and 
the edge prediction task. Due to the differences in opti-
mization objectives for specific tasks, segmentation and 
edge prediction branches may focus on different scales 
of information, and different focuses of tasks can also 
introduce perturbations. By mapping/transferring the 
segmentation results to edge prediction, we can enforce 
the consistency regularization between the two tasks, 
thereby establishing task-level consistency (consistency 
among tasks).

Fig. 1 Example of an uncertainty map from the left atrium dataset. The uncertainty map was obtained using Monte Carlo dropout, 
with highlighted regions indicating high uncertainty (low confidence). In this dataset, high uncertainty areas were primarily located 
along the edges of the atrium
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Based on this task-level consistency and data-level 
consistency design, our model can attempt to maintain 
consistent segmentation masks for the same image and 
its perturbed version between the teacher and student 
networks. Moreover, since the original image and its 
perturbed versions represented the same object, their 
semantic features should be similar even after different 
perturbations. This means that the feature embedding 
obtained by a feature extractor of the teacher and stu-
dent networks should be similar in the feature space, 
corresponding to the feature-level consistency (consist-
ency among features). Simple feature-level consistency 
constraints can be imposed by applying absolute error 
loss (L1) /absolute error loss (L2) on the encoder out-
put features between the teacher and student networks 
[46]. However, in addition to ensuring that the encoder 
outputs of the teacher and the student network are sim-
ilar, it is essential to ensure the contrastive property of 
feature embedding in the feature space. In other words, 
the feature embeddings of voxels belonging to the same 
category should cluster closely together in the feature 
space, while those from different categories should be 
pushed apart. Contrastive learning is perfectly suited 
to meet this requirement. But current popular con-
trastive learning approaches like MoCo [47] and Sim-
CLR [48], which treat entire images as instances for 
contrastive learning, may not be optimal for medical 
image segmentation tasks. On the one hand, instance-
level contrastive methods emphasize the minimiza-
tion of the distance between augmented versions of 
the same image while maximizing the distance from 
other images. This approach may potentially overlook 
the detailed structural information within each image 
critical for segmentation. On the other hand, using a 
large number of samples for contrast has been proven 

to be a critical factor in pretraining performance dur-
ing the construction of positive and negative pairs [48]. 
However, due to resource limitations, it is challenging 
to adopt methods like SimCLR [48] that increase the 
batch size to get a large number of contrastive sample 
pairs, particularly for 3D medical images with multi-
ple slices. Inspired by previous research [33, 49–51], 
this study introduced a voxel-level contrastive learn-
ing with a memory bank to enforce feature consistency. 
Specifically, the specified size memory bank stores 
and dynamically updates voxel features generated dur-
ing training. So, the model can retrieve a large num-
ber of previously stored voxel features from different 

categories in the memory bank for voxel-level contras-
tive learning during the training process. This design 
eliminates the need to recalculate features for each con-
trastive sample and reduces the dependency on large 
batch sizes to gather a sufficient number of contrastive 
pairs. The memory bank effectively increases the num-
ber and diversity of contrastive samples without signifi-
cantly increasing computational overhead.

In summary, shown in Fig.  1, this study designed 
a semi-supervised medical image segmentation net-
work. The model takes 3D LGE-CMR as input and out-
put object segmentation and edge prediction results. 
The overall framework consists of three main parts: a 
multi-task mean teacher structure (shown in khaki on 
the left), an inter-task transformation module (shown 
in green on the upper right), and a contrastive learning 
module for feature consistency (shown in purple on the 
left). These three parts achieve consistency constraints 
at the data-level, task-level, and feature-level.

In this manuscript, we defined the semi-supervised 
problem as follows: Given a semi-supervised train-
ing dataset Dtrain = {Dl ,Du} , where Dtrain consists 
of N labeled data Dl = {xl , yl} and M unlabeled data 
Du = {xu} , with N < < M. xl and ylrepresent the input 
images and corresponding segmentation annota-
tions from the labeled subset, and xu represents the 
input images from the unlabeled subset. Assuming 
the model’s predicted segmentation output is pseg , the 
semi-supervised approach computes the supervised 
loss Lsup based on the comparison between pseg and yl . 
Additionally, it calculates the unsupervised loss Lsemi 
through consistency measures. The model optimizes its 
parameters by jointly considering the supervised loss 
Lsup and the unsupervised loss Lsemi as constraints. The 
overall optimization objective of the model was to min-
imize the loss function in Eq. (1):

where Lsup and Lsemi represent the supervised loss 
and unsupervised loss, respectively. Lseg  and  Ledge 
are the segmentation loss and edge prediction loss in 
the multi-task framework (indicated by red dashed 
arrows), which would be specifically explained in 
The mean teacher architecture of multiple tasks sec-
tion  Ldata

consis, L
task
consis, L

feat
consis represent the consistency 

constraints at the data-level, task-level, and feature-
level (indicated by yellow, green, and purple arrows, 
respectively), which will be introduced sequentially in 
The mean teacher architecture of multiple tasks  sec-
tion  to  Voxel-level contrastive learning and feature-
level consistency  section.  λ, β and γ are the weighting 

(1)
L = Lsup+�Lsemi = Lseg + β Ledge + γ L

feat_l
consis +� L

data
consis + L

task
consis + γ L

feat_u
consis
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coefficients for the supervised loss and unsupervised 
loss, the segmentation loss and edge prediction loss, 
and the feature consistency loss and other consistency 
losses, respectively.

The mean teacher architecture of multiple tasks
As shown in Fig.  2, the khaki-colored parts on the left 
represent the student and teacher networks, which had 
the same network structure but were different in param-
eter update strategies. The student network was updated 
using gradient descent to minimize the supervised loss 
on labeled data and the consistency loss on unlabeled 

data. In contrast, the teacher network was updated using 
exponential moving average (EMA) of the student net-
work’s weights. If we define the weight of the student net-
work at time step t as θ t , then the weight of the teacher 
network ξ t at time step t is:

where α is the update rate for EMA (typically set to 
0.99) to balance the proportion of the teacher network 
weight ξ t at time step t coming from the student net-
work’s weight θ t and the teacher network’s weight ξ t−1 . 
This updated strategy allows the teacher network to 

(2)ξ t = α ξ t−1 + (1− α )θ t

Fig. 2 The overall architecture of the proposed model. The architecture follows the mean teacher model, where student and teacher 
networks have the same structure. The model consists of an encoder (shown in deep cyan) for feature extraction and two task-specific output 
heads for segmentation (shown in red) and edge prediction (shown in deep blue). The network processes 3D medical imaging data as input 
and the dual-task branches simultaneously generate segmentation probability maps and edge prediction results. The model parameter 
is optimized by minimizing supervised loss (Sup-Loss, represented by red arrows) and three types of semi-supervised losses (Semi-Loss, indicated 
by yellow, green, and purple arrows) targeting consistency across data, tasks, and features. The teacher network is updated via the exponential 
moving average (EMA) of the student network’s weights. The “Erode” operation refers to the transformation from segmentation results to edge 
prediction
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provide more stable and reliable predictions, incorporat-
ing the knowledge learned by the student network over 
time.

In the mean teacher model, the architectures of stu-
dent and teacher networks were identical. For the seg-
mentation branch, this study adopted the V-Net, a classic 
encoder-decoder architecture widely used in medical 
imaging, which had demonstrated excellent performance 
in various medical image segmentation tasks. As shown 
in Fig. 2, the segmentation branch consisted of four levels 
of encoders and corresponding decoders. The encoders 
and decoders were connected through skip connections. 
Given an input image x , the overall process of the seg-
mentation task can be described as (3):

where Fseg represents the target segmentation branch, 
and pseg represents the obtained segmentation result.

For the edge prediction task, the shallow layers of the 
network tend to generate edges that are unrelated to the 
classes, while the deeper layers are responsible for detect-
ing class-aware semantic edges. Taking the left atrium 
segmentation task as an example, we aimed to obtain 
edge prediction results that complemented the segmen-
tation task and focused only on the edges of the left 
atrium instead of other cardiac cavities. Therefore, fusing 
features from shallow and deep layers was particularly 
important in the model design. Inspired by the DDS net-
work [52], this study adopted a deep supervision-based 
edge prediction approach to attempt multi-scale fusion 
and then output. During actual implementation, feature 
maps from each stage in the encoder were upsampled by 
trilinear interpolation. Then, the upsampled feature map 
was concatenated and processed by a 1 × 1 convolutional 
layer with a single output channel to generate the edge 
prediction map pedge . The trainable parameters of the 
edge prediction module were confined to a convolutional 
layer dedicated to channel transformation. This design 
ensured that there was no additional burden imposed on 
the overall model structure. The overall process can be 
described as (4):

where Ei represents the output feature map 
from the i-th stage of the encoder, i ∈ [1, 4]

;{E1,up
(

E2
)

,up
(

E3
)

,up
(

E4
)

} represents the result of 
upsampling and concatenating of feature maps from the 
four different scales. Fedge represents the edge predic-
tion branch, which was implemented using a 1 × 1 con-
volutional layer.

In summary, for the labeled data Dl = {xl , yl} , supervised 
learning can be performed using the segmentation branch 

(3)pseg = Fseg (x)

(4)pedge = Fedge

(

{E1,up
(

E2
)

,up
(

E3
)

,up
(

E4
)

}

)

and edge prediction branch. Before calculating the loss, 
this study first extracted the target edges bl that matched 
with input xl from the segmentation label yl using an edge 
extraction algorithm. Since edges appear as single pixels in 
the image and have weaker constraints, this study empiri-
cally extracted edges with equal thickness edges of 2 pixels 
as supervision signals for optimization. The loss function 
for the segmentation task is a combination of cross-entropy 
loss Lce and Dice loss Ldice , given by (5):

The loss function for the edge prediction task is cross-
entropy loss Lce as (6):

For the unlabeled data Du = {xu} , as the labels yu were 
missing, the loss cannot be directly calculated. Ideally, for 
a same input x experiencing different perturbations, the 
outputs of the teacher network pt and the student net-
work ps should be consistent. Therefore, in the framework 
of mean teacher model, this study introduced consist-
ency constraints to impose unsupervised loss, encourag-
ing consistent outputs under different perturbations of 
the same input. During the forward pass of the network, 
this study applied noise to the input x and used Dropout 
operations in the network. The differences between the 
predicted results of the teacher and student networks can 
serve as unsupervised constraint signals to aid in param-
eter updates. Since the perturbations were mainly applied 
to the input images, this approach can be viewed as con-
sistency constraints at the data level. The loss term Ldata

consis 
can be described as (7):

where ptseg , ptedge, p
s
seg , p

s
edge represent the segmentation 

results and edge prediction results from the teacher and 
student networks, respectively. Lconsis(·) is an unsupervised 
loss used to measure the consistency between the predic-
tions of the teacher and student networks for the same 
input x with different perturbations. In this study, the Mean 
Squared Error (MSE) loss was chosen for computing the 
consistency loss.

Inter‑task transformation module and task‑level 
consistency
In order to apply task-level consistency, this study first 
implemented the transformation from segmentation 
results to edge prediction conventional (“Erode” in Fig. 2) 
to minimize the difference in consistency between the two 
tasks. For a pixel point px belonging to the segmented 

(5)Lseg = 0.5× (Lce

(

pseg , yl
)

+ Ldice

(

pseg , yl
)

)

(6)Ledge = Lce

(

pedge, bl
)

(7)
L
data
consis = Lconsis

(

ptseg , p
s
seg

)

+ Lconsis

(

ptedge, p
s
edge

)
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object, the segmentation result can be transformed into 
edge prediction using the formula (8):

where min
{

d
(

px, px′ /∈ seg
)}

 describes the minimum 
distance from the current pixel point px to background 
pixels (not segmented objects). D is the distance thresh-
old, which can be regarded as the thickness of the edge. 
In this study, an equal-thickness region of D = 2 pixels 
was selected empirically as the target edge. Erosion oper-
ation was used to extract the edge from the segmented 
object. This process was implemented using max-pooling 
operation. The transformation process did not interrupt 
gradient backpropagation, making it suitable for param-
eter optimization using gradient descent.

In this study, the consistency constraint between tasks 
was only applied to the unlabeled data Dl = {xl , yl} . This 
loss Ltask

consis can be described as (9):

Voxel‑level contrastive learning and feature‑level 
consistency
As previously mentioned, this study attempts to enforce 
feature consistency constraints through voxel-level con-
trastive learning. Differing from the method of loss 
calculation for segmentation results based on the afore-
mentioned two consistency constraints, feature consist-
ency constraints attempt loss calculation at the encoder 
output in the encode-decode structure, thus encouraging 
the encoder to extract the consistent feature representa-
tion for the original image and its perturbed versions. As 
shown in Fig. 3(a), for an unlabeled sample, it was simul-
taneously input to both the teacher and student networks. 
The encoder output of the student network after projec-
tion mapping was used as the feature representation of the 
image. The segmentation result obtained from the teacher 
network served as a pseudo-label, assigning class informa-
tion to each voxel in the feature representation. Contras-
tive learning loss was then computed voxel-wisely. In the 
specific calculation process, this study treated voxel feature 
representations of the same class in the Memory Bank as 
positive samples and different classes as negative samples. 
If the voxel feature vectors from the student network were 
considered as queries and the vectors from the Memory 
Bank were considered as keys, the optimization objec-
tive of contrastive learning was to maximize the similarity 
between queries and keys of the same class and minimize 
the similarity between queries and keys of different classes. 
The loss function used in this study is shown in Eq. (10):

(8)

T (px) =

{

1, px ∈ seg & min
{

d
(

px, px′ �∈ seg
)}

< D
0, otherwise

}

(9)L
task
consis = Lconsis

(

pedge,Erode
(

pseg
))

where C is the number of classes, qc represents the 
feature representation of a single voxel from the stu-
dent network, k+, k− represent the voxel feature rep-
resentations from the Memory Bank that belong to 
the same class and different classes as qc , respectively, 
N+/N− are the numbers of k+, k− in the Memory Bank 
for qc , sim(·) is the similarity calculation function using 
sim(q, k) = exp

(

qTk/τ
)

 , and τ is the temperature coef-
ficient. During the training phase, the network brought 
pixels in similar class closer together and these in dif-
ferent class farther apart while optimizing Lfeat_u

consis  to 
enforce feature consistency constrains. This ensured 
the contrastive properties between pixels of the same 
and different classes and compelling the encoder to 
learn a good feature representation.

When calculating the loss, a crucial issue is the main-
tenance of a high-quality Memory Bank. As there is 
limited storage space for voxel feature representations 
for all samples, and considering this study focused on 
semi-supervised segmentation, the Memory Bank only 
selected high-quality voxel feature vectors from labeled 
data for storage. The designed Memory Bank was a 
fixed-length queue with a length of η, and its update 
rule is shown in Fig. 3(b), following the first-in, first-out 
principle. The update process of Memory Bank only 
involved the teacher network. Given labeled data as 
input, the network outputs the feature representation 
and segmentation result of the image. The feature qual-
ity evaluation rule was applied using the segmentation 
prediction and segmentation label to select high-qual-
ity feature vectors from the feature representation. 
These selected feature vectors were pushed into the 
Memory Bank, and the earliest stored feature vectors 
were popped out. The teacher network was updated 
using EMA. Its output feature was a smoothed repre-
sentation of the current and previous time steps. 
Accordingly, the Memory Bank obtained relatively sta-
ble and reliable feature storage. The feature quality 
evaluation rule was defined as follows: given the output 
feature representation f t , segmentation result ptseg , and 
segmentation label yl , the voxel points in f t that have 
high-quality feature vectors should satisfy the condi-
tion f t ==

(

Sigmoid
(

ptseg

)

> µ

)

 , where µ is the confi-
dence threshold. The selected voxel points were then 
sorted based on their confidence and the top K voxel 
points were used as the feature representation for 
updating the Memory Bank.

To make better use of the labeled data Dl = {xl , yl} 
in semi-supervised tasks, we also applied the feature 

(10)L
feat_u
consis =

∑C
c=0

1

N+

∑N+

i=0 sim
(

qc , k
+
i

)

1

N+

∑N+

i=0 sim
(

qc , k
+
i

)

+
∑N−

j=0 sim

(

qc , k
−
j

)
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consistency loss to Dl . When calculating the loss Lfeat_lconsis , 
we replaced the pseudo label generated by the teacher 
network with the actual labels yl.

Experiments and results
Experimental settings
Dataset

Left atrium segmentation 2018 Atria Segmentation 
Challenge [14] provides a total of 154 cardiac LGE-CMR 
scans from 60 patients with atrial fibrillation. 100 LGE-
CMR scans have been publicly available, which have been 

annotated by doctors for left atrium segmentation. Fol-
lowing the approach described in [38], this study divided 
the data into 80 training images and 20 testing images.

Left ventricle segmentation EMIDEC challenge [42] 
provides 150 data samples from different patients, 
including 50 normal cases and 100 cases of myocardial 
infarction. Currently, 100 training data and correspond-
ing labels have been publicly available, consisting of 67 
pathological cases and 33 normal cases. In this study, 
only the left ventricle labels were used for experimenta-
tion. The left ventricle image data from the EMIDEC 

Fig. 3 The schematic diagram of contrastive learning. (a) represents a schematic diagram of applying contrastive learning loss. Unlabeled 
samples are simultaneously fed into both the teacher and student networks. The features generated by the student model’s encoder are projected 
through a mapping layer, and the segmentation results from the teacher model act as pseudo-labels, assigning class information to each voxel 
of the student model’s encoder output. The contrastive learning loss is then calculated. (b) demonstrates the updated rules for storing features 
in the memory bank. The memory bank functions as a fixed-length queue that operates on a first-in, first-out (FIFO) basis. When labeled data 
is input, the teacher model generates feature representations and segmentation results. High-quality feature vectors are selected based on these 
segmentation results and corresponding labels and are pushed into the memory bank, while the oldest feature vectors are popped out
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challenge was randomly split into five subsets for 5-fold 
cross-validation, which was used to evaluate the model’s 
performance.

Model implementation details
The overall objective of this study was to minimize the 
loss function, as shown in Eq.(1). The hyperparameters 
for the training process were set as follows: the weight 
coefficients β for segmentation and edge prediction loss 
was set to 0.6, and the weight coefficients γ for feature-
level consistency loss with other consistency losses was 
set to 0.1. The weight coefficient λ for supervised and 
unsupervised losses were defined as a ramp-up func-
tion �(t) = 0.1 ∗ e−5(1−t/tmax) , where t,  tmax  represent 
the current iteration step and the maximum iteration 
number of training, respectively.

During the training process, the initial learning rate 
was set to 0.01 and decreased by a factor of 0.5 every 
2500 iterations. The network parameters were opti-
mized using the SGD optimizer with momentum 
(weight decay=0.0001, momentum=0.9) for 10,000 
iterations. The batch size for training was set to 4, 
which included two labeled images and two unlabeled 
data samples. In the preprocessing step, all data were 
cropped around the heart region and normalized to 
zero mean and unit variance. Since the original sizes 
of the data in the two datasets were different, we ran-
domly cropped 112×112×80 sub-volumes as the input 
to the network for the left atrium segmentation data-
set and cropped 48×48×4 sub-volumes as the input for 
the left ventricle segmentation. Due to the different 
input sizes in the two datasets, there were slight dif-
ferences in the 4-level encoding-decoding structure of 
the segmentation network. For the ventricle dataset, 
the down-sampling ratio was adjusted to ensure proper 
functioning.

We believed that the extracted image features were 
coarse and less reliable at the beginning of the network 
training. Therefore, in the early stage of training, we did 
not apply feature consistency constraints to avoid the 
model learning incorrect feature distributions. We set 
the iterations of training from 500 to 1000 as the prepa-
ration period for the Memory Bank. During this stage, 
high-quality voxel feature representations generated 
were stored in the Memory Bank and feature consist-
ency loss is not calculated until after 1000 rounds. The 
confidence threshold µ in the feature quality evaluation 
rule was set to 0.95. Each category in the Memory Bank 
can store up to η=2028 voxel features, and the maxi-
mum number of feature vectors stored per image in the 
Memory Bank is K =

η
len(xl)

 . The temperature coeffi-

cient τ in the loss calculation was set to 0.1. Regarding 
the specific model details, the Project used in this man-
uscript followed the design flow of Conv→ReLu→Conv, 
where a 1×1 convolution was used to project the 
256-channel feature output from the encoder to 128 
channels. This Project was designed explicitly for voxel-
level contrastive learning and differed from the com-
monly used Multi-Layer Perceptron (MLP) in 
instance-level contrastive learning.

Evaluation metrics
To quantitatively evaluate the segmentation results, we 
used four common metrics for segmentation tasks. They 
are the Dice coefficient (Dice), Jaccard Index (Jaccard), 
Average surface distance (ASD), and 95% Hausdorff Dis-
tance (95HD). The first two metrics, Dice and Jaccard, 
primarily measure the overlap between the segmentation 
result and the ground truth from a regional perspective, 
with higher values indicating better overlap. The lat-
ter two metrics, ASD and 95HD, assess the similarity of 
all point pairs between the segmentation result and the 
ground truth from a surface perspective. In this case, 
smaller values indicate better similarity.

Results
Table  1 presents the quantitative performance evalua-
tion of the left atrium segmentation task. Referring to 
common practices in semi-supervised segmentation 
[53, 54], our proposed method achieved the highest per-
formance when trained with both 10% and 20% labeled 
data. Specifically, with 8 labeled images (10%), the Dice, 
Jaccard, ASD, and 95HD were 88.34%, 79.30%, 7.92, and 
2.02, respectively, While using 16 labeled images (20%), 
the Dice, Jaccard, ASD, and 95HD improved to 90.70%, 
83.09%, 6.41, and 1.72, respectively. Figure  4 provides 
visual segmentation results trained by 20% labeled data, 
where the third column shows the 3D reconstruction of 
four samples from the left atrium segmentation dataset, 
along with the segmentation results on slices.

The quantitative and visual evaluations of the left ven-
tricle segmentation dataset were performed similarly 
to the left atrium dataset. Table  2 presents the perfor-
mance metrics, and Fig. 5 provides visual results trained 
by 20% Labeled data. To assess the model’s performance, 
the proposed method was compared to the UA-MT [38] 
and DTC [36], which were reproduced by applying the 
left ventricular segmentation dataset. As a result, our 
method trained by 10% Labeled data achieved Dice, Jac-
card, ASD, and 95HD scores of 87.22%,77.95%, 2.27, and 
0.61, respectively. Our method trained by 20% Labeled 
data achieved Dice, Jaccard, ASD, and 95HD scores of 
88.99%, 80.45%, 1.87, and 0.51, respectively.
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Discussion
Compare with other methods
As shown in Figs.  4 and 5, we visually compared the 
typical UA-MT [38] and DTC [36] methods with our 
proposed method. UA-MT [38] and DTC [36] are com-
monly used as baselines, which correspond to the mean 
teacher model and multi-task model, respectively. These 
network structures and model parameters for the left 

atrium segmentation task were obtained from publicly 
available code. For the left ventricle segmentation task, 
we reproduced these network structures and trained 
on left ventricle dataset. The last column in Figs. 4 and 
5 represents the ground truth provided by the doctors, 
which serves as the reference standard for performance 
evaluation. For the left atrium segmentation task, the 
top two rows and bottom two rows in Fig. 4 display the 

Fig. 4 The left atrium segmentation results. The first two rows show the results of 3D reconstruction; the last two rows display the segmentation 
results on individual slices. From left to right, the images represent the prediction results from UA-MT [38], DTC [36], our method, and the Ground 
Truth

Table 1 Quantitative evaluation of the left atrium segmentation

a indicates the segmentation performance trained with only the labeled data sourced from UA-MT [38]
b denotes that our method (best value) is significantly better than the reference method (p-value < 0.05) based on a paired t-test). Since the UA-MT method only 
provided its performance under the 10% labeled data setting and did not release the model files, a paired t-test comparison with this method was not conducted

Method Scans used Dice(%) Jaccard(%) 95HD(voxel) ASD(voxel)

Labeled Unlabeled

V‑Neta 8 0 78.57 66.96 21.20 6.07

V‑Neta 16 0 86.03 76.06 14.26 3.51

V‑Neta 80 0 91.14 83.82 5.75 1.52

UA‑MT [38] 8(10%) 72 84.25 73.48 13.84 3.36

SASSNet [55] 8(10%) 72 87.32b 77.72b 9.62b 2.55b

LG‑ER‑MT [56] 8(10%) 72 85.54b 75.12b 13.29b 3.77b

DTC [36] 8(10%) 72 87.51 78.17 8.23 2.36

Ours 8(10%) 72 88.34 79.30 7.92 2.02
UA‑MT [38] 16(20%) 64 88.88b 80.21b 7.32 2.26b

SASSNet [55] 16(20%) 64 89.54b 81.24b 8.24 2.20b

LG‑ER‑MT [56] 16(20%) 64 89.62b 81.31b 7.16 2.06b

DTC [36] 16(20%) 64 89.42b 80.98b 7.32b 2.10b

Ours 16(20%) 64 90.70 83.09 6.41 1.72
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results of 3D reconstruction and single-slice segmen-
tation, respectively. Comparing the first and the third 
rows, it can be observed that our method preserves the 

overall structure of the atrium better than the other 
methods. For example, in the third rows, the predic-
tion of UA-MT incorrectly identifies the regions not 

Table 2 Quantitative evaluation of the left ventricular segmentation(mean±variance)

a indicates the segmentation performance trained with only the labeled data
b denotes that our method (best value) is significantly better than the reference method (p-value < 0.05) based on a paired t-test

Method Scans used Dice(%) Jaccard(%) 95HD(voxel) ASD(voxel)

Labeled Unlabeled

V‑Neta 8 0 83.67±9.09 72.86±12.12 7.08±8.65 1.91±2.06

V‑Neta 16 0 87.77±5.93 78.67±8.77 3.07±4.77 0.90±1.27

V‑Neta 80 0 91.38±4.00 84.36±6.33 1.49±0.66 0.37±0.38

UA‑MT 8(10%) 72 84.68±7.41b 74.3±10.47b 5.99±3.4b 1.71±1.04b

DTC 8(10%) 72 85.62±7.41b 75.52±10.47b 3.08±3.4b 0.84±1.04b

Ours 8(10%) 72 87.22±7.00 77.95±9.97 2.27±1.75 0.61±0.5
UA‑MT 16(20%) 64 87.94±5.12b 78.93±7.73b 3.30±0.91b 0.92±0.33b

DTC 16(20%) 64 88.58±5.12 79.85±7.73 1.88±0.91 0.52±0.33

Ours 16(20%) 64 88.99±4.60 80.45±7.10 1.87±0.84 0.51±0.31

Fig. 5 The left ventricular segmentation results. From left to right, the images represent the prediction results from UA-MT [38], DTC [36], our 
method, and the Ground Truth
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belonging to the atrium, resulting in over-segmentation 
and the result of DTC exhibits a hole in the atrium seg-
mentation, indicating under-segmentation problem. 
In contrast, the segmentation of proposed method is 
more consistent with the Ground Truth. The second and 
fourth rows demonstrate that our proposed method per-
forms better in capturing details. These areas indicated 
by purple and yellow arrows in the images correspond 
to the pulmonary vein orifice connected to the left 
atrium. For example, in the comparison of fourth rows, 
the predictions of UA-MT and DTC exhibit discontinu-
ity or missing in the pulmonary vein area, whereas our 
segmentation are more similar to the Ground Truth in 
morphology. Our method achieved more consistent 
results with the ground truth, possibly due to the mul-
titask structure of our proposed model that effectively 
focuses on edge information (as discussed in Effective-
ness of edge prediction tasks section). For the left ventri-
cle segmentation task, as the dataset contains a smaller 
number of slices (ranging from 4 to 10), the 3D recon-
struction visualization is less prominent. Therefore, only 
single-slice segmentation results are presented in Fig. 5. 
Similar with the segmentation results of the left atrium, 
our proposed method achieved better consistency with 
the ground truth regarding the overall ventricle struc-
ture and edge details. Tables 1 and 2 provide the quan-
titative analysis results, which comprehensively evaluate 
the performance based on the Dice, Jaccard, ASD, and 
95HD metrics. Our proposed model outperforms the 
other methods across both left atrium and left ventricle 
segmentation tasks.

Figure  6 utilizes a box plot with a scatter plot overlay 
to depict the segmentation performance of the model 
on the LA and LV datasets. It is apparent from the figure 
that, across both datasets, the proposed method not only 
shows higher mean and median values in the Dice coef-
ficient but also exhibits a more concentrated distribution 
of results. This indicates that the method, in addition to 
achieving better overall performance, also possesses a 
certain level of stability and robustness.

 Ablation experiment
The effectiveness of different components in the pro-
posed method is demonstrated through ablation experi-
ments. It is worth noting that all ablation experiments 
are conducted on the LA dataset, which consists of 16 
labeled data and 64 unlabeled data. The results of the 
four ablative experiments are presented in Table  3 and 
Fig.  7, where different components of the network are 
deactivated by using different losses. Experiments I 
and II represent supervised learning results using 16 
labeled samples (20%) for training. Experiment I exclu-
sively employs segmentation loss for training, which 

can be considered as the baseline for segmentation per-
formance. Experiment II shows that incorporating edge 
prediction effectively improves the model’s performance. 
Experiment III adds data-level consistency constraints to 
the model, resulting in a 0.76% performance gain. Experi-
ments IV and V, based on data consistency, add task-level 
and feature-level consistency constraints, respectively. 
The performance is further enhanced, improving Dice 
scores by 1.06% and 1.20%, respectively. Finally, Experi-
ment VI represents the overall model proposed in this 
manuscript, achieving the best performance. The results 
of the ablation experiments demonstrate that the edge 
prediction task, data-level consistency constraint, task-
level consistency constraint, and feature-level consist-
ency constraint in the model can complement each other 
and further enhance the model’s performance. A paired 
t-test was conducted to analyze the significance of the 
differences between Experiments II-V and the baseline 
(Experiment I), as shown in Table 3. Although significant 
differences were not shown in the comparisons between 
the baseline and Experiments II-V (p-values>0.05), the 
comparison between the baseline and the proposed 
model (Experiment VI) resulted in a p-value<0.05, show-
ing statistically significant improvement. This suggests 
that the significant improvement is due to the combined 
effect of the data-level, task-level, and feature-level con-
sistency. Additionally, to further illustrate the ablation 
experiment, Fig.  7 presents bar graphs for the other 
evaluation metrics: Jaccard, ASD, and 95HD. The figure 
shows that the proposed method outperforms the abla-
tion experiments (Experiments I-V) across all evaluation 
metrics, achieving the best results.

The effectiveness of voxel‑level contrast learning
Consistent representation of features
In this study, it is believed that by applying voxel-level 
contrastive learning, the model can achieve consist-
ent representations of similar data in the feature space, 
where pixels of the same class cluster together while 
pixels of different classes are as far apart as possible. To 
visualize these features, a classical feature distribution 
visualization method called t-SNE is employed. Figure 8 
shows orange points representing foreground voxels 
(left atrium) and green points representing background 
voxels (all non-left atrium regions). It can be observed 
that after applying, the feature distribution exhibits 
clear clustering of points in same color and clear trend 
of separation between the orange and green points. This 
visualization confirms that the voxel-level contrastive 
learning employed in this study effectively brings similar 
pixels closer in the feature space while pushing different 
pixels apart, thereby achieving consistent representations 
of features.
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Fig. 6  Bar graph with a scatter plot overlay for different methods on test samples. (a) and (b) respectively represent the results trained by 10% 
labeled data and 20% labeled data on the LA dataset. From left to right, the methods compared are UAMT [38], SASSNet [55], LG-ER-MT [56], DTC 
[36], and the proposed method. In (a), only the mean value of the UA-MT method with 10% labeled data is shown in the bar graph since the model 
files were not publicly available. (c) and (d) display the results trained with 10% and 20% labeled data on the left ventricle LV dataset. From left 
to right, the methods are UAMT, DTC, and the proposed method

Table 3 Comparison of ablation experiments

a denotes that our method (VI, best value) is significantly better than the baseline method (I) based on a paired t-test (p-value < 0.05)

Methods Lseg Ledge L
data
consis L

task
consis L

feat
consis

Dice(%)

I Seg √ 89.14

II Seg+Edge √ √ 89.64
(+0.50)

III Seg+Edge+Data √ √ √ 89.90
(+0.76)

IV Seg+Edge+Data+Task √ √ √ √ 90.20
(+1.06)

V Seg+Edge+Data+Feat √ √ √ √ 90.34
(+1.20)

VI Seg+Edge+Data+Task+Feat
(Ours Method)

√ √ √ √ √ 90.70a

(+1.56)
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Comparison of critical hyperparameters in voxel‑level 
contrast learning
In this study, maintaining a high-quality Memory Bank is 
considered crucial in implementing voxel-level contras-
tive learning. The Memory Bank size is a critical hyperpa-
rameter that limits the number of stored samples. Apart 
from its impact on computational efficiency, the number 
of features in the Memory Bank can affect the effective-
ness of contrastive learning. To investigate this issue, 
experiments were conducted with Memory Bank sizes 
ranging from 128 to 4096. The results of this experiment 
are presented in Table 4. Within a certain range, using a 
larger number of samples during training tends to yield 
better performance. The best results can be achieved 
when the Memory Bank size is set to 2048.

Comparison of voxel‑level contrastive learning 
and instance‑level contrastive learning
Voxel-level contrastive learning has two main advantages. 
First, it overcomes the challenge of using instance-level 

contrastive learning in segmentation tasks, where an 
image may contain pixels belonging to different classes. 
Second, it addresses the difficulty of constructing pos-
itive-negative sample pairs in contrastive learning due 
to the limited size of medical image datasets in medi-
cal image segmentation. To demonstrate the advantages 
of voxel-level contrastive learning, this study compared 
it with instance-level contrastive learning based on the 
simCLR [48]. As shown in Table 5, the Dice coefficients 
obtained using instance-level and voxel-level contrastive 
learning strategies on the left atrium dataset were 89.34% 
and 90.70%, respectively, indicating a performance 
improvement with voxel-level contrastive learning.

 Effectiveness of edge prediction tasks
In the ablation experiments presented in Table 3, this 
study conducts a quantitative analysis of the impact of 
the edge prediction task by comparing Experiments I 
with II. The comparison reveals that incorporating 
the edge prediction task leads to an improvement in 

Fig. 7 A bar graph with a scatter plot overlay presenting results for different methods on the test set from the LA dataset. (a), (b), (c), and (d) 
correspond to the four metrics: Dice, Jaccard, ASD, and 95HD. The proposed method (VI) outperforms all ablation experiments (I-IV) across all 
metrics, demonstrating superior performance in Dice, Jaccard, ASD, and 95HD
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the Dice coefficient from 89.14 to 89.64%. Further-
more, for the proposed semi-supervised segmenta-
tion model, the edge prediction task serves as a crucial 
component of task-level consistency constraints. As 
depicted in Table  3, Experiment IV, by introducing 
inter-task consistency constraints on Experiment III, 
raises the Dice coefficient from 89.90 to 90.20%.

Considering the primary role of the edge prediction 
task in the model is to guide the model to pay atten-
tion to the neglected edge regions. To illustrate the 
effect of the edge segmentation task, this study pre-
sents the results of three edge prediction examples in 
Fig. 9. From the figure, it can be observed that the edge 

Fig. 8 t-SNE result of voxel features on the test set of the atrial dataset. (a) and (b) show the overall distribution before and after applying feature 
consistency loss. Due to the large number of voxels, a random selection of 50,000 voxel points was visualized. (c) and (d) demonstrate the feature 
distribution of a single data sample from the test set before and after applying feature consistency loss

Table 4 Influences of different Memory Bank size

MemoryBank Size 128 512 1024 2048 4096

Dice 90.29 90.40 90.20 90.70 90.23

Table 5 Comparison of voxel-level contrast learning and 
instance-level contrastive learning

Contrastive Loss Type Instance Level Pixel Level

Dice 89.34 90.70
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prediction task successfully achieves the intended goal 
by capturing the structural information of the edges.

 Limitations
Although the overall performance of our method is 
encouraging. There are still some limitations in our 
work. This study primarily focused on enforcing con-
sistency at the data-level, task-level, and feature-level. 
The consideration of model structure-level consist-
ency deserves further exploration. For instance, some 
researches not only employed CNN to construct mod-
els but also attempted to build hybrid models incor-
porating Transformer and CNN structures [57, 58]. 
Applying the differences between various model struc-
tures for implementing consistency regularization has 
demonstrated excellent semi-supervised performance. 
Additionally, our method concentrated on the semi-
supervised learning task of cardiac chamber segmen-
tation, specifically on two publicly available datasets 
containing only 100 samples of LGE-CMR for the left 
atrium and left ventricle. In the future, we aim to con-
struct datasets with a larger and more diverse patient 
population for testing and extend our approach to 
other medical segmentation tasks.

Conclusion
In this work, we focused on the semi-supervised seg-
mentation of the atrium and ventricle on LGE-CMR 
images. To address the potential neglect of the car-
diac cavity border regions, an edge prediction task was 
introduced within the framework of the mean teacher 

model to enhance the model’s focus on these edge 
areas. Furthermore, to fully leverage unlabeled data, 
this study integrated triple-consistency constraints at 
the data-level, task-level, and feature-level through the 
mean teacher model, inter-task transformation mod-
ule, and voxel-level contrastive learning, respectively. 
In particular, the introduction of voxel-level contras-
tive learning allowed the model to observe the feature 
distribution patterns of the entire dataset and encour-
aged the formation of consistent feature representa-
tions. This study demonstrated excellent performance 
in both atrium and ventricle segmentation tasks com-
pared to other semi-supervised segmentation methods. 
For the atrium segmentation task, when trained with 
20% labeled data, the Dice, Jaccard, ASD, and 95HD 
were 90.70%, 83.09%, 6.41, and 1.72, respectively. When 
trained with 10% labeled data, the corresponding val-
ues were 88.34%, 79.30%, 7.92, and 2.02. For the ven-
tricle segmentation task, the metrics with 20% labeled 
data were 88.96%, 80.41%, 1.74, and 0.49, respec-
tively. With 10% labeled data, the Dice, Jaccard, ASD, 
and 95HD were 87.22%, 77.95%, 2.27, and 0.61. These 
results validate the effectiveness of the proposed model 
in both atrium and ventricle segmentation tasks.

Acknowledgements
Not applicable.

Authors’ contributions
Methodology and Writing-original draft were performed by Hairui Wang, Data 
curation and Investigation were performed by Helin Huang, Jing Wu and 
Nan Li. Supervision and Writing-review & editing were performed by Kaihao 
Gu and Xiaomei Wu. Funding acquisition was performed by Xiaomei Wu. All 
authors read and approved the final manuscript.

Fig. 9 Results of edge prediction, from left to right are the original image, Ground Truth, predicted segmentation result, and predicted edge result



Page 18 of 19Wang et al. BMC Cardiovascular Disorders          (2024) 24:571 

Funding
This work was supported by National Key Research and Development 
Program, grant no.2021YFC2400203, Shanghai Municipal Commission of 
Economy and Information Technology, grant no.GYQJ-2018-2-05, and Medical 
Engineering Fund of Fudan University, grant no.yg2021-38.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Clinical trial number: not applicable. The data used in this manuscript were 
obtained from opensource databases (2018 Atria Segmentation Challenge and 
EMIDEC challenge).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Biomedical Engineering, School of information Science 
and Technology, Fudan University, Shanghai 200433, China. 2 Academy 
for Engineering and Technology, Fudan University, Fudan University, 
Shanghai 200433, China. 3 Yiwu Research Institute of Fudan University, Yiwu, 
Zhejiang 322000, China. 4 Key Laboratory of Medical Imaging Computing 
and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200433, 
China. 5 Shanghai Engineering Research Center of Assistive Devices, Shang-
hai 200433, China. 

Received: 17 July 2024   Accepted: 10 October 2024

References
 1. Hassan S, Barrett CJ, Crossman DJ. Imaging tools for assessment of 

myocardial fibrosis in humans: the need for greater detail. Biophys Rev. 
2020;12:969–87. https:// doi. org/ 10. 1007/ s12551- 020- 00738-w.

 2. Ma Y, Ding P, Li L, et al. Three-dimensional printing for heart diseases: 
clinical application review. Biodes Manuf. 2021;4:675–87. https:// doi. 
org/ 10. 1007/ s42242- 021- 00125-8.

 3. Martin-Isla C, Campello VM, Izquierdo C, et al. Image-based cardiac 
diagnosis with machine learning: a review. Front Cardiovasc Med. 
2020;7:1. https:// doi. org/ 10. 3389/ fcvm. 2020. 00001.

 4. Sander J, de Vos BD, Išgum I. Automatic segmentation with detection 
of local segmentation failures in cardiac MRI. Sci Rep. 2020;10:21769. 
https:// doi. org/ 10. 1038/ s41598- 020- 77733-4.

 5. Morais P, Vilaça JL, Queirós S, et al. Automated segmentation of the 
atrial region and fossa ovalis towards computer-aided planning of 
inter-atrial wall interventions. Comput Methods Programs Biomed. 
2018;161:73–84. https:// doi. org/ 10. 1016/j. cmpb. 2018. 04. 014.

 6. Heist EK, Refaat M, Danik SB, et al. Analysis of the left atrial appendage by 
magnetic resonance angiography in patients with atrial fibrillation. Heart 
Rhythm. 2006;3:1313–8. https:// doi. org/ 10. 1016/j. hrthm. 2006. 07. 022.

 7. Varela M, Bisbal F, Zacur E, et al. Novel Computational Analysis of Left 
Atrial Anatomy Improves Prediction of Atrial Fibrillation Recurrence after 
ablation. Front Physiol. 2017;8. https:// doi. org/ 10. 3389/ fphys. 2017. 00068.

 8. Colan SD, Shirali G, Margossian R, et al. The ventricular volume variability 
study of the Pediatric Heart Network: Study Design and impact of beat 
averaging and variable type on the reproducibility of echocardiographic 
measurements in children with chronic dilated cardiomyopathy. J Am 
Soc Echocardiogr. 2012;25:842–e8546. https:// doi. org/ 10. 1016/j. echo. 
2012. 05. 004.

 9. Li L, Zimmer VA, Schnabel JA, Zhuang X. Medical image analysis on left 
atrial LGE MRI for atrial fibrillation studies: a review. Med Image Anal. 
2022;77:102360. https:// doi. org/ 10. 1016/j. media. 2022. 102360.

 10. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for 
Biomedical Image Segmentation. In: Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2015. Munich, Germany: 
Springer International Publishing; 2015. p. 234–41.

 11. Milletari F, Navab N, Ahmadi S-A. V-Net: Fully Convolutional Neural 
Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth 
International Conference on 3D Vision (3DV). Stanford, CA: IEEE; 2016. 
p. 565–571.

 12. Borra D, Andalò A, Paci M, et al. A fully automated left atrium segmen-
tation approach from late gadolinium enhanced magnetic resonance 
imaging based on a convolutional neural network. Quant Imaging 
Med Surg. 2020;10:1894–907. https:// doi. org/ 10. 21037/ qims- 20- 168.

 13. Xia Q, Yao Y, Hu Z, Hao A. Automatic 3D Atrial Segmentation from 
GE-MRIs Using Volumetric Fully Convolutional Networks. In: Pop M, 
Sermesant M, Zhao J, editors. Statistical Atlases and Computational 
Models of the Heart. Atrial Segmentation and LV Quantification Chal-
lenges. Cham: Springer International Publishing; 2019. p. 211–220.

 14. Xiong Z, Xia Q, Hu Z, et al. A global benchmark of algorithms for seg-
menting the left atrium from late gadolinium-enhanced cardiac mag-
netic resonance imaging. Med Image Anal. 2021;67:101832. https:// doi. 
org/ 10. 1016/j. media. 2020. 101832.

 15. Qiao M, Wang Y, van der Geest RJ, Tao Q. Fully Automated Left Atrium 
Cavity Segmentation from 3D GE-MRI by Multi-atlas Selection and Reg-
istration. In: Statistical Atlases and Computational Models of the Heart. 
Atrial Segmentation and LV Quantification Challenges. Cham: Springer 
International Publishing; 2019. p. 230–236.

 16. Nuñez-Garcia M, Zhuang X, Sanroma G, et al. Left Atrial Segmentation 
Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas 
Selection. In: Pop M, Sermesant M, Zhao J, editors. Statistical Atlases 
and Computational Models of the Heart. Atrial Segmentation and LV 
Quantification Challenges. Cham: Springer International Publishing; 
2019. p. 302–310.

 17. Mamalakis M, Pankaj G, Tom N, et al. Automatic development of 3D 
anatomical models of border zone and core scar regions in the left 
ventricle. Comput Med Imaging Graph. 2023;103:102152. https:// doi. 
org/ 10. 1016/j. compm edimag. 2022. 102152.

 18. Mamalakis M, Panka G, Tom N, et al. Artificial Intelligence framework 
with traditional computer vision and deep learning approaches for 
optimal automatic segmentation of left ventricle with scar. Artif Intell 
Med. 2023;143:102610. https:// doi. org/ 10. 1016/j. artmed. 2023. 102610.

 19. Zhuang X, Xu J, Luo X, et al. Cardiac segmentation on late gadolinium 
enhancement MRI: a benchmark study from multi-sequence cardiac 
MR segmentation challenge. Med Image Anal. 2022;81:102528. https:// 
doi. org/ 10. 1016/j. media. 2022. 102528.

 20. Martin-Isla C, Campello VM, Izquierdo C, et al. Deep learning segmenta-
tion of the right ventricle in Cardiac MRI: the M&Ms challenge. IEEE J 
Biomed Health Inf. 2023;27:3302–13. https:// doi. org/ 10. 1109/ JBHI. 2023. 
32678 57.

 21. Yu X, Chen J, Fang B, et al. Cardiac LGE MRI Segmentation with Cross-
modality Image Augmentation and Improved U-Net. IEEE J Biomedical 
Health Inf. 2023;27:588–97. https:// doi. org/ 10. 1109/ JBHI. 2021. 31395 91.

 22. Wang S, Wu F, Li L, et al. Unsupervised Cardiac Segmentation utilizing 
synthesized images from anatomical labels. In: Camara O, Puyol-Antón 
E, Qin C, et al. editors. Statistical atlases and computational models of 
the heart. Regular and CMRxMotion Challenge Papers. Cham: Springer 
Nature Switzerland; 2022. pp. 349–58.

 23. Rajchl M, Lee MCH, Oktay O, et al. DeepCut: object segmentation from 
bounding Box annotations using Convolutional neural networks. IEEE 
Trans Med Imaging. 2017;36:674–83. https:// doi. org/ 10. 1109/ TMI. 2016. 
26211 85.

 24. Xiong H, Liu S, Sharan RV, et al. Weak label based bayesian U-Net 
for optic disc segmentation in fundus images. Artif Intell Med. 
2022;126:102261. https:// doi. org/ 10. 1016/j. artmed. 2022. 102261.

 25. Zhang K, Zhuang X. ShapePU: a New PU Learning Framework regular-
ized by global consistency for Scribble supervised Cardiac Segmen-
tation. In: Wang L, Dou Q, Fletcher PT, et al. editors. Medical Image 
Computing and Computer assisted intervention – MICCAI 2022. Cham: 
Springer Nature Switzerland; 2022. pp. 162–72.

https://doi.org/10.1007/s12551-020-00738-w
https://doi.org/10.1007/s42242-021-00125-8
https://doi.org/10.1007/s42242-021-00125-8
https://doi.org/10.3389/fcvm.2020.00001
https://doi.org/10.1038/s41598-020-77733-4
https://doi.org/10.1016/j.cmpb.2018.04.014
https://doi.org/10.1016/j.hrthm.2006.07.022
https://doi.org/10.3389/fphys.2017.00068
https://doi.org/10.1016/j.echo.2012.05.004
https://doi.org/10.1016/j.echo.2012.05.004
https://doi.org/10.1016/j.media.2022.102360
https://doi.org/10.21037/qims-20-168
https://doi.org/10.1016/j.media.2020.101832
https://doi.org/10.1016/j.media.2020.101832
https://doi.org/10.1016/j.compmedimag.2022.102152
https://doi.org/10.1016/j.compmedimag.2022.102152
https://doi.org/10.1016/j.artmed.2023.102610
https://doi.org/10.1016/j.media.2022.102528
https://doi.org/10.1016/j.media.2022.102528
https://doi.org/10.1109/JBHI.2023.3267857
https://doi.org/10.1109/JBHI.2023.3267857
https://doi.org/10.1109/JBHI.2021.3139591
https://doi.org/10.1109/TMI.2016.2621185
https://doi.org/10.1109/TMI.2016.2621185
https://doi.org/10.1016/j.artmed.2022.102261


Page 19 of 19Wang et al. BMC Cardiovascular Disorders          (2024) 24:571  

 26. Lee D-H. Pseudo-Label: The Simple and Efficient Semi-Supervised 
Learning Method for Deep Neural Networks. In: Workshop on chal-
lenges in representation learning. Atlanta: ICML; 2013. p. 896.

 27. Grandvalet Y, Bengio Y. Semi-supervised learning by Entropy Minimiza-
tion. Advances in neural information Processing systems. MIT Press; 2004.

 28. Ke Z, Wang D, Yan Q et al. (2019) Dual Student: breaking the limits of 
the teacher in Semi-supervised Learning. pp 6728–36.

 29. Jeong J, Lee S, Kim J, Kwak N. Consistency-based semi-supervised learn-
ing for object detection. Advances in neural information Processing 
systems. Curran Associates, Inc; 2019.

 30. Kumar A, Rawat YS. End-to-End Semi-Supervised Learning for Video 
Action Detection. In: 2022 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR). New Orleans: IEEE; 2022. p. 14680–14690.

 31. Seibold CM, Reiß S, Kleesiek J, Stiefelhagen R. Reference-guided 
Pseudo-label Generation for Medical Semantic Segmentation. AAAI. 
2022;36:2171–9. https:// doi. org/ 10. 1609/ aaai. v36i2. 20114.

 32. Wang X, Yuan Y, Guo D, et al. SSA-Net: spatial self-attention network for 
COVID-19 pneumonia infection segmentation with semi-supervised few-
shot learning. Med Image Anal. 2022;79:102459. https:// doi. org/ 10. 1016/j. 
media. 2022. 102459.

 33. Alonso I, Sabater A, Ferstl D, et al. Semi-Supervised Semantic Segmenta-
tion with Pixel-Level Contrastive Learning from a Class-wise Memory 
Bank. In: 2021 IEEE/CVF International Conference on Computer Vision 
(ICCV). Montreal, QC, Canada: IEEE; 2021. p. 8199–208.

 34. Yang X, Song Z, King I, Xu Z. A Survey on Deep Semi-supervised Learning. 
IEEE Trans Knowl Data Eng. 2022;1–20. https:// doi. org/ 10. 1109/ TKDE. 
2022. 32202 19.

 35. Wang K, Zhan B, Zu C, et al. Tripled-Uncertainty Guided Mean Teacher 
Model for Semi-supervised Medical Image Segmentation. In: de Bruijne 
M, Cattin PC, Cotin S, editors. Medical Image Computing and Computer 
Assisted Intervention – MICCAI 2021. Cham: Springer International Pub-
lishing; 2021. p. 450–460.

 36. Luo X, Chen J, Song T, Wang G. Semi-supervised medical image seg-
mentation through dual-task consistency. Proc AAAI Conf Artif Intell. 
2021;35:8801–9.

 37. Zhang Y, Jiao R, Liao Q, et al. Uncertainty-guided mutual consistency 
learning for semi-supervised medical image segmentation. Artif Intell 
Med. 2023;138:102476. https:// doi. org/ 10. 1016/j. artmed. 2022. 102476.

 38. Yu L, Wang S, Li X, et al. Uncertainty-Aware Self-ensembling Model for 
Semi-supervised 3D Left Atrium Segmentation. In: Shen D, Liu T, Peters 
TM, editors. Medical Image Computing and Computer Assisted Interven-
tion – MICCAI 2019. Cham: Springer International Publishing; 2019. p. 
605–613.

 39. Xiang J, Qiu P, Yang Y. FUSSNet: Fusing two sources of uncertainty for 
Semi-supervised Medical Image Segmentation. Medical Image Comput-
ing and Computer assisted intervention – MICCAI 2022. Cham: Springer 
Nature Switzerland; 2022. pp. 481–91.

 40. Kwon D, Kwak S. Semi-supervised Semantic Segmentation with Error 
Localization Network. In: 2022 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). New Orleans: IEEE; 2022. p. 9947–57.

 41. Wu Y, Xu M, Ge Z, et al. Semi-supervised Left Atrium Segmentation with 
Mutual Consistency Training. In: de Bruijne M, Cattin PC, Cotin S, editors. 
Medical Image Computing and Computer Assisted Intervention – MICCAI 
2021. Cham: Springer International Publishing; 2021. p. 297–306.

 42. Lalande A, Chen Z, Decourselle T, et al. Emidec: a database usable for the 
Automatic evaluation of myocardial infarction from delayed-enhance-
ment Cardiac MRI. Data. 2020;5:89. https:// doi. org/ 10. 3390/ data5 040089.

 43. Xu A, Wang S, Ye S, et al. Ca-Mt: A Self-Ensembling Model for Semi-Super-
vised Cardiac Segmentation with Elliptical Descriptor Based Contour-
Aware. In: 2022 IEEE 19th International Symposium on Biomedical 
Imaging (ISBI). Kolkata: IEEE; 2022. p. 1–5.

 44. Liu J, Desrosiers C, Zhou Y. Semi-supervised Medical Image Segmenta-
tion Using Cross-Model Pseudo-Supervision with Shape Awareness and 
Local Context Constraints. In: Wang L, Dou Q, Fletcher PT, editors. Medical 
Image Computing and Computer Assisted Intervention – MICCAI 2022. 
Cham: Springer Nature Switzerland; 2022. p. 140–150.

 45. Wang Y, Wang H, Shen Y, et al. Semi-Supervised Semantic Segmentation 
Using Unreliable Pseudo-Labels. In: 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). New Orleans: IEEE; 2022. p. 
4238–4247.

 46. Yang X, Tian J, Wan Y, et al. Semi-supervised medical image segmenta-
tion via cross-guidance and feature-level consistency dual regularization 
schemes. Med Phys. 2023;50(7):4269–81. https:// doi. org/ 10. 1002/ mp. 16217.

 47. He K, Fan H, Wu Y, et al. Momentum Contrast for Unsupervised Visual Rep-
resentation Learning. In: 2020 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE; 2020. p. 9726–35.

 48. Chen T, Kornblith S, Norouzi M, Hinton G. A Simple Framework for 
Contrastive Learning of Visual Representations. In: Proceedings of the 
37th International Conference on Machine Learning. PMLR; 2020. p. 
1597–1607.

 49. Lai X, Tian Z, Jiang L, et al. Semi-Supervised Semantic Segmentation With 
Directional Context-Aware Consistency. In: 2021 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE; 2021. p. 
1205–1214.

 50. Wu H, Wang Z, Song Y, et al. Cross-patch Dense Contrastive Learning 
for Semi-supervised Segmentation of Cellular Nuclei in Histopathologic 
Images. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). New Orleans, LA, USA: IEEE; 2022. p. 11656–65.

 51. Zhong Y, Yuan B, Wu H, et al. Pixel Contrastive-Consistent Semi-Super-
vised Semantic Segmentation. In: 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV). Montreal: IEEE; 2021. p. 7253–7262.

 52. Liu Y, Cheng M-M, Fan D-P, et al. Semantic edge detection with Diverse 
Deep Supervision. Int J Comput Vis. 2022;130:179–98. https:// doi. org/ 10. 
1007/ s11263- 021- 01539-8.

 53. Peiris H, Chen Z, Egan G, Harandi M. Duo-SegNet: Adversarial Dual-Views 
for Semi-supervised Medical Image Segmentation. In: De Bruijne M, Cat-
tin PC, Cotin S, Padoy N, Speidel S, Zheng Y, et al., editors. Medical Image 
Computing and Computer Assisted Intervention – MICCAI 2021. Cham: 
Springer International Publishing; 2021. p. 428–38.

 54. Lou A, Tawfik K, Yao X, et al. Min-Max Similarity: a contrastive Semi-super-
vised Deep Learning Network for Surgical Tools Segmentation. IEEE Trans 
Med Imaging. 2023;42:2832–41. https:// doi. org/ 10. 1109/ TMI. 2023. 32661 
37.

 55. Li S, Zhang C, He X. Shape-Aware Semi-supervised 3D Semantic Segmen-
tation for Medical Images. In: Medical Image Computing and Computer 
Assisted Intervention – MICCAI 2020. Cham: Springer International 
Publishing; 2020. p. 552–561.

 56. Hang W, Feng W, Liang S, et al. Local and Global Structure-Aware Entropy 
Regularized Mean Teacher Model for 3D Left Atrium Segmentation. In: 
Martel AL, Abolmaesumi P, Stoyanov D, editors. Medical Image Comput-
ing and Computer Assisted Intervention – MICCAI 2020. Cham: Springer 
International Publishing; 2020. p. 562–571.

 57. Luo X, Hu M, Song T, et al. Semi-Supervised Medical Image Segmentation 
via Cross Teaching between CNN and Transformer. In: Proceedings of The 
5th International Conference on Medical Imaging with Deep Learning. 
PMLR; 2022. p. 820–833.

 58. Li W, Yang H. Collaborative Transformer-CNN Learning for Semi-super-
vised Medical Image Segmentation. In: 2022 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM). Las Vegas: IEEE; 2022. p. 
1058–1065.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1609/aaai.v36i2.20114
https://doi.org/10.1016/j.media.2022.102459
https://doi.org/10.1016/j.media.2022.102459
https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.1016/j.artmed.2022.102476
https://doi.org/10.3390/data5040089
https://doi.org/10.1002/mp.16217
https://doi.org/10.1007/s11263-021-01539-8
https://doi.org/10.1007/s11263-021-01539-8
https://doi.org/10.1109/TMI.2023.3266137
https://doi.org/10.1109/TMI.2023.3266137

	Semi-supervised segmentation of cardiac chambers from LGE-CMR using feature consistency awareness
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Methods background and design motivation
	The mean teacher architecture of multiple tasks
	Inter-task transformation module and task-level consistency
	Voxel-level contrastive learning and feature-level consistency

	Experiments and results
	Experimental settings
	Dataset
	Model implementation details
	Evaluation metrics

	Results

	Discussion
	Compare with other methods
	 Ablation experiment
	The effectiveness of voxel-level contrast learning
	Consistent representation of features
	Comparison of critical hyperparameters in voxel-level contrast learning
	Comparison of voxel-level contrastive learning and instance-level contrastive learning

	 Effectiveness of edge prediction tasks
	 Limitations

	Conclusion
	Acknowledgements
	References


