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Abstract 

Introduction Congenital heart disease (CHD) represents the most common group of congenital anomalies, 
constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need 
for improved risk assessment tools. Artificial intelligence (AI) holds promise in enhancing outcome predictions 
for congenital cardiac surgery. This study aims to systematically review the utilization of AI in predicting post-opera-
tive outcomes in this population.

Methods Following PRISMA guidelines, a comprehensive search of Pubmed, Scopus, and Web of Science databases 
was conducted. Two independent reviewers screened articles based on predefined criteria. Included studies focused 
on AI models predicting various post-operative outcomes in congenital heart surgery.

Results The review included 35 articles, primarily published within the last four years, indicating growing interest 
in AI applications. Models predominantly targeted mortality and survival (n = 16), prolonged length of hospital or ICU 
stay (n = 7), postoperative complications (n = 6), prolonged mechanical ventilatory support time (n = 4), with additional 
focus on specific outcomes such as peri-ventricular leucomalacia (n = 2) and malnutrition (n = 1). Performance metrics, 
such as area under the curve (AUC), ranged from 0.52 to 0.997. Notably, these AI models consistently outperformed 
traditional risk stratification categories. For instance, in assessing the risk of morbidity and mortality, the AI models 
demonstrated superior performance compared to conventional methods.

Conclusion AI-driven prediction models show significant promise in improving outcome predictions for congenital 
heart surgery. They surpass traditional risk prediction tools not only in immediate postoperative risks but also in long-
term outcomes such as 1-year survival and malnutrition. Further studies with robust external validation are necessary 
to assess the practical applicability of these models in clinical settings.

The protocol of this review was prospectively registered on PROSPERO (CRD42024550942).
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Introduction
Congenital heart disease (CHD) is the most prevalent 
type of major congenital anomalies, constituting nearly 
one-third of such disorders [1]. Not long ago, only a small 
fraction of patients with moderate and severe CHDs 
reached adulthood. In the 1950s, however, the introduc-
tion of cardiopulmonary bypass significantly advanced 
the application of surgery as a treatment for congenital 
heart disease, resulting in marked improvement in long-
term outcomes [2, 3]. Yet even with advancements in sur-
gery, CHD plays a substantial role in the overall burden 
of non-communicable diseases (NCDs) [4], with postop-
erative complications in 46–74% of all operated patients 
[5, 6]. Prediction of these outcomes can be critical in 
operative and post-operative decision-making.

To predict postoperative outcomes in CHD patients, 
such as morbidity and mortality, several risk stratifica-
tion categories have been introduced, including Risk 
Adjustment in Congenital Heart Surgery-1 (RACHS-1) 
[7] and Society of Thoracic Surgery-European Associa-
tion for Cardiothoracic Surgery Congenital Heart Sur-
gery Mortality Categories (STS-EACTS). However, it has 
been demonstrated that only the risk stratifications that 
depend predominantly on expert opinion and consen-
sus, underperform in comparison to those that are more 
evidence-based [8]. Therefore, there is a need for new 
prediction models based on big data. [9]. Linear logistic 
regression models have shown promise in the past [10], 
yet the advent of artificial intelligence (AI) and the devel-
opment of more complex AI models has shown great 
applicability [11].

In recent years, AI has emerged as a novel promising 
approach to data science [12]. With regard to AI pre-
diction models, the most distinctive factor is that these 
models learn from examples rather than being pro-
grammed by rules as in traditional predicting models 
[13]. This makes these AI models non-linear complex 
tools well-suited for identifying and illustrating patterns 
that are either unknown to or too complex for traditional 
biostatistics [14, 15]. Moreover, AI models can distin-
guish variables most impactful in a particular process, 
allow for a greater number of predictive variables to be 
incorporated into a model, and learn important features 
by training on original datasets [16]. As the diverse array 
of AI predictive modeling techniques and the utility of 
each may seem confounding, Table 1 showcases models 
that are most frequently utilized by reports in the litera-
ture in order to provide better insight [17–21]. Numer-
ous AI models have been designed to predict outcomes 
following various types of surgeries, including cardiac 
surgeries [22].

The aim of the current study was to systematically 
review the relevant literature and identify all studies that 

have utilized AI to predict post-operative outcomes in 
patients undergoing surgery for congenital heart defects.

Methods
This systematic review was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines [23]. The proto-
col of this review was prospectively registered on PROS-
PERO (CRD42024550942).

Literature search strategy
A comprehensive search was conducted on May 4th, 
2024 in 3 electronic databases, Pubmed, Web of Science, 
and Scopus by one author (IM). No language or publi-
cation limitations were applied. The search results were 
then passed on to S.R. and M.H. for further evaluation.

The search terms used included combinations of 3 
separate search parameters, combined using Boolean 
operators:

Parameter a: ("artificial intelligence", "deep learning", 
and "machine learning").

Parameter b: ("congenital heart defect(s)", "tetralogy of 
Fallot", "atrial septal defect", "ventricular septal defect", 
"patent ductus arteriosus", and "patent foramen ovale").

Parameter c: ("surgery", "operation", "heart", and 
"cardiac").

Screening and eligibility criteria
Screening was carried out in 2 phases, with an initial 
title-abstract screening followed by a full-text evalua-
tion, by two independent authors (S.R., M.H.), with dis-
crepancies being resolved through discussion with a third 
reviewer (I.M.). Papers employing an AI model to predict 
a post-operative outcome after congenital heart surgery 
were included based on the PICOS (population, interven-
tion, comparator, outcome, and study design (PICOS) 
criteria defined below. Artificial intelligence predictive 
models were identified according to the definitions pro-
vided by Jovel et al. [24].

Population: Patients undergoing congenital heart 
surgery.

Intervention: AI models and algorithms.
Comparator: Current algorithms used to predict out-

comes, if available.
Outcome: Postoperative outcomes.
Study design: AI development and/or validation 

studies.
Papers that were conducted on animals were excluded. 

Study designs including reviews, meta-analyses, case 
reports, preclinical studies, editorials, book chapters, 
and conference abstracts were also excluded. In addition, 
due to ambiguity in defining what exactly constitutes a 
machine learning model, some consider LR a traditional 
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statistical model, while others refer to it as a machine 
learning one [17–21]. For the purposes of this review, we 
considered LR to be an AI model and thus included pre-
dictive models employing it.

Outcomes
The intention of the reviewers was to review all post-
operative outcomes examined in the literature. After the 
completion of full-text screening, we ended up reviewing 
the following outcomes: prediction of risk in congenital 
heart surgery based on RACHS (risk adjustment for con-
genital heart surgery) classification, critical events, mor-
bidities, and complications such as prolonged length of 
hospital stay and prolonged mechanical ventilatory sup-
port time, in-hospital and 30-day mortality, periventricu-
lar leukomalacia (PVL), one-year transplant-free survival 
after Norwood procedure, pulmonary arterial hyper-
tension, echocardiography variables related to the right 
atrium, postoperative pulmonary vein obstruction, inter-
stage mortality between stage I and II of the Norwood 
procedure while at home, and malnutrition.

Data extraction and risk of bias assessment
A data extraction template was prepared beforehand 
which consisted of the following data: first author, year 
of publication, country, source of data, type of source, 
type of study, population size, population age, gender, 
whether the patients are adult or pediatric, type of defect, 
algorithm/model, NO. of variables, outcomes, mode of 
validation, calibration, missing data strategy, measures 
of performance of each outcome, the best algorithm, 
and main findings. The template was independently 
filled with the required qualitative and quantitative data 
by two authors (SH.R., M.H.), with a third author (I.M.) 
re-evaluating the extracted data and correcting any 
disagreements.

The risk of bias in the selected articles was assessed 
using the PROBAST tool [25] by two independent 
reviewers (SH.R., M.H.) with a third reviewer (I.M.) 
resolving any variations through discussion. This tool 
consists of 4 domains for bias detection, Participants, 
Predictors, Outcome, and Analysis, with a total of 20 cri-
teria. Each domain can be graded with a low risk, a high 
risk, or an unclear risk of bias. Studies with a low risk of 
bias in all four domains were classified as low-risk while 
having a high risk of bias in even one domain would 
result in judging the study as high-risk. If one or more 
domains had an unclear risk of bias with the rest being 
low-risk, the risk of bias attributed to the study would 
then be declared unclear.

World map was designed using https:// www. mapch art. 
net/ world. html.

Results
Study selection
A total of 335 articles were identified in the literature 
search. There were 90 duplicates, the removal of which 
yielded 245 references. A further 188 references were 
excluded in the initial phase of screening based on the 
title and the abstract, and 57 articles were sought for full-
text retrieval. During the second phase of screening 22 
studies were excluded due to the targeted population not 
being that of patients undergoing congenital heart sur-
geries (n = 8), the intervention not being AI-based (n = 4), 
or the assessed endpoint not being a postoperative out-
come (n = 10), resulting in the inclusion of 35 articles in 
the database search. (Fig. 1).

Study characteristics
The characteristics of the included population in each 
study are outlined in Table 2. The included studies were 
published from 2013 to 2023 and mostly from United 
States (Fig. 2). The source of data in the majority of stud-
ies were the local electronic medical records (EMR). 
The included studies trained and tested their models 
in between 56 and 221,335 individuals, mostly pediat-
ric patients with no particular focus on the type of con-
genital heart disease. Among the studies with a focus on 
specific types of defects, single ventricle physiology and 
tetralogy of Fallot (TOF) were the most frequently inves-
tigated (Fig. 2).

The details regarding the AI prediction models con-
structed in each study are displayed in Table 3. The most 
commonly utilized algorithm was logistic regression (LR, 
n = 16) followed by boosting (B, n = 14), random forests 
(RF, n = 9), support vector machine (SVM, n = 8), decision 
trees and artificial neural networks (DT and ANN, n = 7 
each), k-nearest neighbor and naïve bayes (KNN and 
NB, n = 4 each) (Fig. 2). In addition, the most frequently 
assessed outcome was short-term mortality with 11 stud-
ies either reporting in-hospital or 30-day mortality. All of 
the included studies were retrospective in design. Moreo-
ver, most of the studies (n = 15) utilized K-fold cross-vali-
dation while 14 used training and testing with or without 
bootstrapping as their mode of validation. Only 6 studies 
externally validated their models.

AI Models and Measures of Performance
Overall AUCs above 0.7 were achieved in at least one 
model in all studies which reported their respective AUC, 
with the exception of one study by Sunthankar et al. [52]. 
Short-term mortality was the most investigated outcome, 
and different AI models across four different articles were 
used to measure it (Fig. 3). The best performance among 
the models predicting this outcome was achieved by 

https://www.mapchart.net/world.html
https://www.mapchart.net/world.html
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logistic regression (LR) with an AUC of 92.6% as reported 
by Zürn et  al. [54], while the worst-performing model 
was also an LR model with an AUC of 72%, as reported 
by Cocomello et al. [36].

Risk of bias assessment
Overall, ten, fourteen, and eleven studies had high, low, 
and unclear risk of bias, respectively. The most common 
domain of bias among the studies was domain 4 (analy-
sis), while the domain imposing the least amount of bias 
was domain 3 (outcome). Overall, 60% of the included 
studies had a high or unclear risk of bias, highlighting 
the need for more detailed quality control in this field 
(Fig. 4).

Discussion
This systematic review explores the application of AI 
(deep learning and machine learning) in the prediction 
of outcomes in congenital cardiac surgery. Overall 35 
articles were included, most of which were published 
in the past four years, showing an increased interest in 

the use of AI. A meta-analysis to assess and compare the 
performance of the models was not possible due to miss-
ing data, yet we can still observe the robust predictive 
performance exhibited by different artificial intelligence 
models, regardless of the outcomes they were designed to 
predict.

The models included focused on the prediction of 
mortality and survival (n = 16) [27, 29, 31, 33, 37, 40, 
46–48, 52–55, 60], prolonged length of hospital or ICU 
stay (n = 7) [29, 40, 43, 46, 47, 57, 58], postoperative 
complications (n = 6) [34, 35, 41, 42, 44, 59] prolonged 
mechanical ventilatory support time (n = 4) [40, 47, 57, 
59], with additional focus on specific outcomes such as 
periventricular leucomalacia [32, 39], acute kidney injury 
[56], malnutrition [50]. The AUCs of the models ranged 
between 0.52 to 0.997, with most models achieving an 
AUC above 0.7, highlighting the predictive potential of 
artificial intelligence in congenital heart surgery. Details 
for each assessed outcome are laid out below:

Discrimination evaluated by area under the curve was 
above 0.8 in almost all of the models evaluating mortality, 

Fig. 1 PRISMA flowchart detailing the search and screening process, made using the Shinyapp by Haddaway et al. [26]
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with the exception of one study by Sunthankar et al. [52] 
which predicted mortality between stages I and II of sin-
gle ventricle surgery. Other mortality-predicting mod-
els focused on survival during the hospital stay and up 
to 1-year post-operation. The sensitivity of the models 
ranged from 0.1 in the LR model by Jalali et  al. [46] to 
0.92 in the random forest model by Chang Junior et  al. 
[37]. The specificity of the predictions ranged from 0.542 
in the gradient-boosted tree model by Sunthankar et al. 
[52] to 0.985 from the multilayer perception model by 
Chang Junior et al. [37]. The number of predictors used 
in each prediction model varied greatly yet some were of 
high predictive value throughout the different models; 
the type of procedures [27, 31, 40, 47, 52], age [27, 31, 
33, 40, 48, 52], weight at the time of surgery [27, 31, 33, 
40, 47, 53], arterial oxygen saturation [37, 48], and days 
since the previous hospitalization [40, 47] were all among 

these, with the type of procedure contributing more than 
45% of predictive value in two instances [40, 47].

The type of operative procedure itself was a significant 
predictor in some models, with the Norwood procedure 
being the most predictive of mortality in some studies 
[27, 31, 47, 52]. This is in accordance with relevant litera-
ture stating the higher mortality rate of this procedure 
in comparison to most other procedures [9, 62]. Crowe 
et  al.’s analysis clearly demonstrated that the Norwood 
procedure has the highest 30-day mortality rate among 
congenital heart surgeries, with a statistically significant 
difference compared to the second-highest rate, observed 
in interrupted aortic arch repair [27]. Sunthankar et  al. 
developed a model aimed at predicting mortality after the 
Norwood procedure in single ventricle physiology and 
found the Norwood/Sano conduit as a significant predic-
tor of mortality, yet deemed the hybrid Norwood method 

Fig. 2 Graphical abstract: a geographic distribution of the studies; b freaquancy of the machine learning algorthims for each congenital heart 
disease; c application and accuracy of machine learning algorithms in congenital heart surgery. Abbreviations: Boosting (B), Congential heart 
surgery (CHS), Single ventricle physiology (SVP), Aortic reconstruction (AR), Total anomalous pulmonary venous connection (TAPVC), Light gradient 
boosting (LGB), Extreme gradient boosting (EGB), CatBoost (CB), Transplant free survival (TFS), Mechanical ventilator support (MVS), Length 
of hospital stay (LoHS), Length of intensive care stay (LoICU), Acute kidney injury (AKI), artificial neural network (ANN), Neural network (NN), Deep 
neural network (DNN), Gradient boosting (GB), Multilayer Perceptron (MLP), Naive Bayes (NB), Bag Decision Trees (BDT), Deep venous thrombosis 
(DVT), Low cardiac output syndrome (LCOS), Support vector machine (SVM), Convolutional neural network (CNN), Random forest (RF), Decision tree 
(DT), K-nearest neighbor (KNN), Logistic regression (LR)
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of less importance [52]. Another study also aimed to pre-
dict mortality after the Norwood procedure; however, it 
did not use the type of Norwood procedure as a predic-
tor, yet still managed to obtain an accuracy of 88% for the 
prediction of mortality [33]. It should also be noted the 
extreme gradient boosting machine model developed by 
Du et al. _which included a large variety of procedures_ 
did not attribute a significant predictive value to the type 
of procedure [48]. Additionally, STS-EACTS scores _ 
estimates of the mortality risk associated with each type 
of congenital cardiac procedure_were also found to be 
highly predictive of mortality by some studies [53, 54]. 
Whether the type of procedure can be used to correctly 
predict mortality after congenital heart surgery requires 
more extensive investigations, yet it seems to be promis-
ing in the few instances where it has predictive value.

The application of age in the predictive models was 
rather heterogeneous, with some finding gestational age 
[52] and age at first extubation [52] as a significant pre-
dictor, while others found the age at the time of surgery 
to be an important predictor [27, 31, 40, 48, 53]. One 
study by Chang Junior et al., however, found a maximum 
of 2.7% predictive importance for age at the time of the 
procedure [37]. This factor similar to the previous one 
is also in accordance with the literature as a large study 
found increasing levels of age lower the likelihood of 
mortality [63]. The utilization of this predictor also shows 
promise.

Weight at the time of surgery was highly predictive in 
some instances [27, 31, 40, 47, 53], while in a model by 

Chang Junior et  al. [37] showed rather diminished pre-
dictive value. This model however found height and BMI 
to be of high importance in their algorithms, suggesting 
that weight on its own may not be a reliable predictor 
and lacks generalizability. The value of weight as a predic-
tor, much like the previous factors, is also evident in the 
literature [64].

The diagnostic group was also identified to be an 
important predictor of mortality by some studies [27, 
31, 37]. Among the anomalies, univentricular heart sta-
tus [27, 31] and by extension, hypoplastic left heart syn-
drome (HLHS) were found to be important predictors of 
mortality. Crowe et al. [27] classified patients with HLHS 
and pulmonary atresia with an intact ventricular septum 
as high risk groups for mortality, which was also cor-
roborated by Rogers et  al. [31]. Both studies also found 
that univentricular heart status is a separate indicator of 
30-day mortality. In addition, Chang Jr. et. al. not only 
found that diagnostic groups are a significant predictor, 
they identified HLHS status as a separate significat pre-
dictor as well [37]. This finding is in alignment with the 
previous literature, which has often found univentricular 
heart anomalies to be the most fatal among congenital 
heart anomalis [65, 66].

Patient height at surgery [37], previous ICU admis-
sion [37], gender [33, 53], usage of cardiopulmonary 
bypass [27, 31], Down syndrome status [27], presense of 
congenital or acquired comorbidities [31], severity of ill-
ness [31], digoxin use at discharge [52], atrial shunt [48], 
and cardiopulmonary bypass time [52] were also notable 

Fig. 3 AUCs of different models investigating short term mortality. Algorithm abbreviations: random forest (RF), Multilayer perception (MLP), 
Logistic regression (LR), Bagged decision trees (BDT), Extra trees (ET), Ada boost classification (ABC), Stochastic gradient boosting (SGB), Extreme 
gradient boosting (XGBoost), Optimal classification trees (OCT), Gradient boosting (GB), Adaptive boosting (ADA)
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Fig. 4 Quality assessment of the studies using PROBAST. Domains: D1: Participants/ D2: Predictors/ D3: Outcome/ D4: analysis
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predictors among the models for mortality prediction, 
yet these findings were only exclusive to one model or 
two models and were not found of considerable value in 
the other included models.

All in all, we observed an exceptional performance 
among the AI models predicting mortality in patients 
undergoing congenital heart surgeries; however, more 
studies need to be conducted in this area in order to per-
form quantitative synthesis and objectively measure their 
performance.

The area under the curve for studies predicting cardiac 
complications was more heterogeneous than mortality, 
with a range of 0.71 to 0.95. We observed that models 
tasked with predicting a broader spectrum of complica-
tions rather than a specific cardiac complication had a 
lower AUC. Furthermore, the sensitivity of predictions 
ranged from 0.34 in an LR model to 0.791 in an extreme 
gradient boosting model, both by Zeng et al. [44] Speci-
ficity of the models predicting complications was not 
reported. As for the predictors used in cardiac compli-
cations, birth weight [49], weight at surgery [44], gesta-
tional age [49], age at surgery [34, 49], cardio-pulmonary 
bypass time [41, 44], ECG variables [42], heart rate [35, 
42], echocardiographic variables [34, 41, 49] and post-
surgery oxygen pressure [41, 44, 49] were all important 
predictors. Echocardiographic variables, such as left ven-
tricular ejection fraction [34], right ventricular global 
strain [41], and right pulmonary artery Z score [49], have 
been shown to correctly foretell cardiac complications 
[67] and due to the ubiquitous and simple nature of echo-
cardiography, these variables can be of immense value in 
predicting cardiac complications.

Another intriguing aspect with regard to cardiac mor-
bidity and mortality is the notable superiority of AI to 
traditional prediction models. Zeng et  al. demonstrated 
that the model they produced using extreme gradient 
boosting achieved a higher AUC compared to univariable 
logistic regression models of Aristotle’s Basic Complexity 
(ABC) score, STS-EACTS mortality and morbidity score, 
and RACHS-1 [44], indicating the potential superiority of 
an AI model to the tools currently available to clinicians. 
In addition, a systematic review assessing the ability of 
these risk stratification systems to predict morbidity 
and mortality found that the AUC of ABC ranges from 
0.59 to 0.743, the AUC of RACHS-1 ranges from 0.68 to 
0.782, and the AUC of STS-EACTS score from 0.732 to 
0.8 [68]. Given the fact that AI models consistently dem-
onstrate AUCs higher than the numbers stated, adopting 
them would likely assist surgeons in better risk stratifica-
tion and decision-making. This is notable as risk stratifi-
cation tools play a crucial part in reducing the morbidity 
and mortality of patients undergoing congenital heart 
surgery [68]. More investigations are needed to compare 

and validate AI prediction models against traditional 
ones. Furthermore, to implement these models clinically, 
traditional machine learning models should be optimized 
with as few features as possible in order to require lower 
computational power [69], and models should be trained 
and externally validated on larger sets of data to maxi-
mize the predictive ability before commercialization.

The area under the curve for length of stay predictive 
models was even more heterogeneous than the previ-
ous outcomes, ranging between 0.54 to 0.95. Sensitivity 
also ranged from 0.32 in an LR model to 0.91 in a deep 
neural network, both developed by Jalali et al. [46]. The 
specificity of the models predicting length of stay was 
not reported. Variables associated with increased length 
of stay were unfortunately not provided in detail by the 
included models, yet Bertsimas et al. [40] found that the 
type of procedure, days since previous admission, weight, 
and age were all significant predictors of prolonged 
length of hospital stay. Moreover, Chang Jr. et  al. found 
that mechanical ventilation time, weight, previous ICU 
admission, vasoactive-inotropic score, and height were 
significant predictors of prolonged length of IC stay [58].

This pattern of AUC appears to show artificial intel-
ligence predictive models are more geared toward pre-
dicting singular binary outcomes, yet newer machine 
learning algorithms perform better than logistic regres-
sion models in this regard. This is evident in the few 
instances they were compared in the included studies 
[40, 44, 46, 52].

While most of the included articles did not focus on a 
specific CHD, outcomes in patients with single ventricle 
physiology (n = 8) and TOF (n = 4) were the most inves-
tigated. The management of patients with single-ven-
tricle physiology is an intricate process, as not only do 
single-ventricle defects vary greatly in anatomical sub-
types, but surgical palliation is undertaken in multiple 
stages [70]. As such, precise prediction models for post-
operative outcomes in these patients are invaluable. AI 
models can predict postoperative complications [35, 42] 
and 1-year mortality [33, 46] with great accuracy. These 
results could not be replicated when predicting interstage 
mortality_i.e. mortality occurring between the first and 
second stages of the Norwood procedure_ as the AUC of 
neither the mortality-predicting models of Sunthankar 
et  al. nor Smith et  al.’s survival-predicting model sur-
passed 70% [52, 60]. Among the studies in patients with 
TOF, the reports were more divergent with respect to 
the measured outcome, yet complications, mortality, and 
indices of heart function have been successfully predicted 
by AI models [29, 34, 41, 49].

Our systematic review has several limitations. First, by 
the nature of congenital heart defects, the patient popula-
tions used to develop the models are quite heterogeneous. 
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As a result, unless the models are specialized in one spe-
cific type of defect, very large sample sizes are needed to 
develop reliable AI models, a condition that was not met 
by some of the included studies. In addition, mainly due to 
the heterogeneous and incomplete reporting of the analy-
ses conducted to develop the AI models, the quality of 
most of the included studies was either low or unclear. We 
suggest that future studies report the steps of model devel-
opment thoroughly to avoid this issue. External validation 
_ i.e. evaluating the developed model on a separate original 
data set different than the one used to train and test the 
model_ was not used in most of the included studies in our 
review. Doing so is important to assess the realistic appli-
cability of predictive models [71] and without this process, 
we cannot say how practical these models can be in the 
healthcare system, therefore more studies are needed to 
validate our findings. Another important point that was 
ignored by most of the included reports was first ensuring 
that the model was calibrated and second, reporting quan-
titative measures of calibration of the model in addition 
to plots. In addition, the high rate of heterogeneity among 
methods, outcomes, and participants did not allow us to 
perform a meta-analysis on any of the outcomes.

Conclusion
The implementation of artificial intelligence in congenital 
heart surgery has resulted in the creation of many pre-
dictive models that have the potential to change the land-
scape of clinical outcome prediction. When assessing the 
risk of postoperative morbidity and mortality, these AI-
generated predictive models demonstrate superior per-
formance compared to traditional risk prediction models. 
Their applicability, however, is not limited to the immedi-
ate risk of complications after surgery and encompasses 
long-term outcomes such as 1-year mortality and malnu-
trition. This systematic review provides a comprehensive 
report on such models and can serve as a bedrock to con-
duct future studies with more insight into the field.
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