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Abstract

Introduction Congenital heart disease (CHD) represents the most common group of congenital anomalies,
constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need
for improved risk assessment tools. Artificial intelligence (Al) holds promise in enhancing outcome predictions

for congenital cardiac surgery. This study aims to systematically review the utilization of Al in predicting post-opera-
tive outcomes in this population.

Methods Following PRISMA guidelines, a comprehensive search of Pubmed, Scopus, and Web of Science databases
was conducted. Two independent reviewers screened articles based on predefined criteria. Included studies focused
on Al models predicting various post-operative outcomes in congenital heart surgery.

Results The review included 35 articles, primarily published within the last four years, indicating growing interest

in Al applications. Models predominantly targeted mortality and survival (n=16), prolonged length of hospital or ICU
stay (n=7), postoperative complications (n=6), prolonged mechanical ventilatory support time (n=4), with additional
focus on specific outcomes such as peri-ventricular leucomalacia (n=2) and malnutrition (n=1). Performance metrics,
such as area under the curve (AUC), ranged from 0.52 to 0.997. Notably, these Al models consistently outperformed
traditional risk stratification categories. For instance, in assessing the risk of morbidity and mortality, the Al models
demonstrated superior performance compared to conventional methods.

Conclusion Al-driven prediction models show significant promise in improving outcome predictions for congenital
heart surgery. They surpass traditional risk prediction tools not only in immediate postoperative risks but also in long-
term outcomes such as 1-year survival and malnutrition. Further studies with robust external validation are necessary
to assess the practical applicability of these models in clinical settings.

The protocol of this review was prospectively registered on PROSPERO (CRD42024550942).
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Introduction

Congenital heart disease (CHD) is the most prevalent
type of major congenital anomalies, constituting nearly
one-third of such disorders [1]. Not long ago, only a small
fraction of patients with moderate and severe CHDs
reached adulthood. In the 1950s, however, the introduc-
tion of cardiopulmonary bypass significantly advanced
the application of surgery as a treatment for congenital
heart disease, resulting in marked improvement in long-
term outcomes [2, 3]. Yet even with advancements in sur-
gery, CHD plays a substantial role in the overall burden
of non-communicable diseases (NCDs) [4], with postop-
erative complications in 46-74% of all operated patients
[5, 6]. Prediction of these outcomes can be critical in
operative and post-operative decision-making.

To predict postoperative outcomes in CHD patients,
such as morbidity and mortality, several risk stratifica-
tion categories have been introduced, including Risk
Adjustment in Congenital Heart Surgery-1 (RACHS-1)
[7] and Society of Thoracic Surgery-European Associa-
tion for Cardiothoracic Surgery Congenital Heart Sur-
gery Mortality Categories (STS-EACTS). However, it has
been demonstrated that only the risk stratifications that
depend predominantly on expert opinion and consen-
sus, underperform in comparison to those that are more
evidence-based [8]. Therefore, there is a need for new
prediction models based on big data. [9]. Linear logistic
regression models have shown promise in the past [10],
yet the advent of artificial intelligence (AI) and the devel-
opment of more complex Al models has shown great
applicability [11].

In recent years, Al has emerged as a novel promising
approach to data science [12]. With regard to Al pre-
diction models, the most distinctive factor is that these
models learn from examples rather than being pro-
grammed by rules as in traditional predicting models
[13]. This makes these AI models non-linear complex
tools well-suited for identifying and illustrating patterns
that are either unknown to or too complex for traditional
biostatistics [14, 15]. Moreover, AI models can distin-
guish variables most impactful in a particular process,
allow for a greater number of predictive variables to be
incorporated into a model, and learn important features
by training on original datasets [16]. As the diverse array
of Al predictive modeling techniques and the utility of
each may seem confounding, Table 1 showcases models
that are most frequently utilized by reports in the litera-
ture in order to provide better insight [17-21]. Numer-
ous Al models have been designed to predict outcomes
following various types of surgeries, including cardiac
surgeries [22].

The aim of the current study was to systematically
review the relevant literature and identify all studies that
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have utilized Al to predict post-operative outcomes in
patients undergoing surgery for congenital heart defects.

Methods

This systematic review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [23]. The proto-
col of this review was prospectively registered on PROS-
PERO (CRD42024550942).

Literature search strategy

A comprehensive search was conducted on May 4th,
2024 in 3 electronic databases, Pubmed, Web of Science,
and Scopus by one author (IM). No language or publi-
cation limitations were applied. The search results were
then passed on to S.R. and M.H. for further evaluation.

The search terms used included combinations of 3
separate search parameters, combined using Boolean
operators:

Parameter a: ("artificial intelligence", "
and "machine learning").

Parameter b: ("congenital heart defect(s)", "tetralogy of
Fallot", "atrial septal defect”, "ventricular septal defect”,
"patent ductus arteriosus”, and "patent foramen ovale").

Parameter c: ("surgery", "operation’, "heart”, and
"cardiac").

deep learning",

Screening and eligibility criteria

Screening was carried out in 2 phases, with an initial
title-abstract screening followed by a full-text evalua-
tion, by two independent authors (S.R., M.H.), with dis-
crepancies being resolved through discussion with a third
reviewer (I.M.). Papers employing an AI model to predict
a post-operative outcome after congenital heart surgery
were included based on the PICOS (population, interven-
tion, comparator, outcome, and study design (PICOS)
criteria defined below. Artificial intelligence predictive
models were identified according to the definitions pro-
vided by Jovel et al. [24].

Population: Patients
surgery.

Intervention: AI models and algorithms.

Comparator: Current algorithms used to predict out-
comes, if available.

Outcome: Postoperative outcomes.

Study design: AI development and/or validation
studies.

Papers that were conducted on animals were excluded.
Study designs including reviews, meta-analyses, case
reports, preclinical studies, editorials, book chapters,
and conference abstracts were also excluded. In addition,
due to ambiguity in defining what exactly constitutes a
machine learning model, some consider LR a traditional

undergoing congenital heart
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statistical model, while others refer to it as a machine
learning one [17-21]. For the purposes of this review, we
considered LR to be an AI model and thus included pre-
dictive models employing it.

Outcomes

The intention of the reviewers was to review all post-
operative outcomes examined in the literature. After the
completion of full-text screening, we ended up reviewing
the following outcomes: prediction of risk in congenital
heart surgery based on RACHS (risk adjustment for con-
genital heart surgery) classification, critical events, mor-
bidities, and complications such as prolonged length of
hospital stay and prolonged mechanical ventilatory sup-
port time, in-hospital and 30-day mortality, periventricu-
lar leukomalacia (PVL), one-year transplant-free survival
after Norwood procedure, pulmonary arterial hyper-
tension, echocardiography variables related to the right
atrium, postoperative pulmonary vein obstruction, inter-
stage mortality between stage I and II of the Norwood
procedure while at home, and malnutrition.

Data extraction and risk of bias assessment

A data extraction template was prepared beforehand
which consisted of the following data: first author, year
of publication, country, source of data, type of source,
type of study, population size, population age, gender,
whether the patients are adult or pediatric, type of defect,
algorithm/model, NO. of variables, outcomes, mode of
validation, calibration, missing data strategy, measures
of performance of each outcome, the best algorithm,
and main findings. The template was independently
filled with the required qualitative and quantitative data
by two authors (SH.R., M.H.), with a third author (I.M.)
re-evaluating the extracted data and correcting any
disagreements.

The risk of bias in the selected articles was assessed
using the PROBAST tool [25] by two independent
reviewers (SH.R., M.H.) with a third reviewer (I.M.)
resolving any variations through discussion. This tool
consists of 4 domains for bias detection, Participants,
Predictors, Outcome, and Analysis, with a total of 20 cri-
teria. Each domain can be graded with a low risk, a high
risk, or an unclear risk of bias. Studies with a low risk of
bias in all four domains were classified as low-risk while
having a high risk of bias in even one domain would
result in judging the study as high-risk. If one or more
domains had an unclear risk of bias with the rest being
low-risk, the risk of bias attributed to the study would
then be declared unclear.

World map was designed using https://www.mapchart.
net/world.html.
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Results

Study selection

A total of 335 articles were identified in the literature
search. There were 90 duplicates, the removal of which
yielded 245 references. A further 188 references were
excluded in the initial phase of screening based on the
title and the abstract, and 57 articles were sought for full-
text retrieval. During the second phase of screening 22
studies were excluded due to the targeted population not
being that of patients undergoing congenital heart sur-
geries (n=_8), the intervention not being Al-based (n=4),
or the assessed endpoint not being a postoperative out-
come (n=10), resulting in the inclusion of 35 articles in
the database search. (Fig. 1).

Study characteristics

The characteristics of the included population in each
study are outlined in Table 2. The included studies were
published from 2013 to 2023 and mostly from United
States (Fig. 2). The source of data in the majority of stud-
ies were the local electronic medical records (EMR).
The included studies trained and tested their models
in between 56 and 221,335 individuals, mostly pediat-
ric patients with no particular focus on the type of con-
genital heart disease. Among the studies with a focus on
specific types of defects, single ventricle physiology and
tetralogy of Fallot (TOF) were the most frequently inves-
tigated (Fig. 2).

The details regarding the AI prediction models con-
structed in each study are displayed in Table 3. The most
commonly utilized algorithm was logistic regression (LR,
n=16) followed by boosting (B, n=14), random forests
(RF, n=9), support vector machine (SVM, n=28), decision
trees and artificial neural networks (DT and ANN, n=7
each), k-nearest neighbor and naive bayes (KNN and
NB, n=4 each) (Fig. 2). In addition, the most frequently
assessed outcome was short-term mortality with 11 stud-
ies either reporting in-hospital or 30-day mortality. All of
the included studies were retrospective in design. Moreo-
ver, most of the studies (n=15) utilized K-fold cross-vali-
dation while 14 used training and testing with or without
bootstrapping as their mode of validation. Only 6 studies
externally validated their models.

Al Models and Measures of Performance

Overall AUCs above 0.7 were achieved in at least one
model in all studies which reported their respective AUC,
with the exception of one study by Sunthankar et al. [52].
Short-term mortality was the most investigated outcome,
and different AI models across four different articles were
used to measure it (Fig. 3). The best performance among
the models predicting this outcome was achieved by
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Identification of new studies via databases and registers

= Records identified from:
k5] Databases (n = 335): Records removed before screening:
2 Pubmed (n = 109) Duplicate records (n = 90)
k= Scopus (n = 163) P =
3 WoS (n = 63)
A
Records screened Records excluded
(n = 245) (n=188)
A
Reports sought for retrieval Reports not retrieved
=2 (n=57) (n=0)
=
[0
(9]
5}
(%]
Reports excluded:
P Wrong population (n = 8)
Reports ass(ﬁs;s%c;)for eligibility Wrong intervention (n = 4)
_ Wrong comparator (n = 0)
Wrong outcome (n = 10)
9 o . .
2 New studies included in review
= (n=35)
C

Fig. 1 PRISMA flowchart detailing the search and screening process, made using the Shinyapp by Haddaway et al. [26]

logistic regression (LR) with an AUC of 92.6% as reported
by Zirn et al. [54], while the worst-performing model
was also an LR model with an AUC of 72%, as reported
by Cocomello et al. [36].

Risk of bias assessment

Overall, ten, fourteen, and eleven studies had high, low,
and unclear risk of bias, respectively. The most common
domain of bias among the studies was domain 4 (analy-
sis), while the domain imposing the least amount of bias
was domain 3 (outcome). Overall, 60% of the included
studies had a high or unclear risk of bias, highlighting
the need for more detailed quality control in this field
(Fig. 4).

Discussion

This systematic review explores the application of Al
(deep learning and machine learning) in the prediction
of outcomes in congenital cardiac surgery. Overall 35
articles were included, most of which were published
in the past four years, showing an increased interest in

the use of Al. A meta-analysis to assess and compare the
performance of the models was not possible due to miss-
ing data, yet we can still observe the robust predictive
performance exhibited by different artificial intelligence
models, regardless of the outcomes they were designed to
predict.

The models included focused on the prediction of
mortality and survival (n=16) [27, 29, 31, 33, 37, 40,
46-48, 52-55, 60], prolonged length of hospital or ICU
stay (n=7) [29, 40, 43, 46, 47, 57, 58], postoperative
complications (n=6) [34, 35, 41, 42, 44, 59] prolonged
mechanical ventilatory support time (n=4) [40, 47, 57,
59], with additional focus on specific outcomes such as
periventricular leucomalacia [32, 39], acute kidney injury
[56], malnutrition [50]. The AUCs of the models ranged
between 0.52 to 0.997, with most models achieving an
AUC above 0.7, highlighting the predictive potential of
artificial intelligence in congenital heart surgery. Details
for each assessed outcome are laid out below:

Discrimination evaluated by area under the curve was
above 0.8 in almost all of the models evaluating mortality,
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B 76 studies W 9 studies W 3 studies WM 2 studies 1 study

Malnutrition

Transplant-Free
Survival

Risk

classification /
RACHS > CHS > MLP > AUC : 0.999

Prolonged MVS > CHS > GB > AUC : 0.856

I MVs |

Need for MVS > SVP > NB > AUC : 0.88

Prolonged length of

LoHS > SVP > DNN > AUC : 0.94 1CU/Hospital stay
I—,

LolCU > CHS > CB > AUC : 0.856

W CHS B ToF | svp W TAPVC AR
Pneumonia > CHS > LR > AUC : 0.929
Complications |

Renal failure > CHS > LGB >AUC : 0.963
DVT >CHS > LR >AUC:0.942
LCOS > CHS > LGB > AUC : 0.893
AKI > AR > EGB > AUC : 0.878

Readmission> CHS > EGB >AUC : 0.997

30-day mortality > CHS > BDT >AUC : 0.926

Mortality i

30-day mortality > CHS > LR >AUC : 0.949

1-year mortality > SVP > DNN >AUC : 0.95

Fig. 2 Graphical abstract: a geographic distribution of the studies; b freaquancy of the machine learning algorthims for each congenital heart
disease; c application and accuracy of machine learning algorithms in congenital heart surgery. Abbreviations: Boosting (B), Congential heart
surgery (CHS), Single ventricle physiology (SVP), Aortic reconstruction (AR), Total anomalous pulmonary venous connection (TAPVC), Light gradient
boosting (LGB), Extreme gradient boosting (EGB), CatBoost (CB), Transplant free survival (TFS), Mechanical ventilator support (MVS), Length

of hospital stay (LoHS), Length of intensive care stay (LolCU), Acute kidney injury (AKI), artificial neural network (ANN), Neural network (NN), Deep
neural network (DNN), Gradient boosting (GB), Multilayer Perceptron (MLP), Naive Bayes (NB), Bag Decision Trees (BDT), Deep venous thrombosis
(DVT), Low cardiac output syndrome (LCOS), Support vector machine (SVM), Convolutional neural network (CNN), Random forest (RF), Decision tree

(DT), K-nearest neighbor (KNN), Logistic regression (LR)

with the exception of one study by Sunthankar et al. [52]
which predicted mortality between stages I and II of sin-
gle ventricle surgery. Other mortality-predicting mod-
els focused on survival during the hospital stay and up
to 1-year post-operation. The sensitivity of the models
ranged from 0.1 in the LR model by Jalali et al. [46] to
0.92 in the random forest model by Chang Junior et al.
[37]. The specificity of the predictions ranged from 0.542
in the gradient-boosted tree model by Sunthankar et al.
[52] to 0.985 from the multilayer perception model by
Chang Junior et al. [37]. The number of predictors used
in each prediction model varied greatly yet some were of
high predictive value throughout the different models;
the type of procedures [27, 31, 40, 47, 52], age [27, 31,
33, 40, 48, 52], weight at the time of surgery [27, 31, 33,
40, 47, 53], arterial oxygen saturation [37, 48], and days
since the previous hospitalization [40, 47] were all among

these, with the type of procedure contributing more than
45% of predictive value in two instances [40, 47].

The type of operative procedure itself was a significant
predictor in some models, with the Norwood procedure
being the most predictive of mortality in some studies
[27, 31, 47, 52]. This is in accordance with relevant litera-
ture stating the higher mortality rate of this procedure
in comparison to most other procedures [9, 62]. Crowe
et al’s analysis clearly demonstrated that the Norwood
procedure has the highest 30-day mortality rate among
congenital heart surgeries, with a statistically significant
difference compared to the second-highest rate, observed
in interrupted aortic arch repair [27]. Sunthankar et al.
developed a model aimed at predicting mortality after the
Norwood procedure in single ventricle physiology and
found the Norwood/Sano conduit as a significant predic-
tor of mortality, yet deemed the hybrid Norwood method
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Short term mortality

1.0m
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Algorithms

Fig. 3 AUCs of different models investigating short term mortality. Algorithm abbreviations: random forest (RF), Multilayer perception (MLP),
Logistic regression (LR), Bagged decision trees (BDT), Extra trees (ET), Ada boost classification (ABC), Stochastic gradient boosting (SGB), Extreme
gradient boosting (XGBoost), Optimal classification trees (OCT), Gradient boosting (GB), Adaptive boosting (ADA)

of less importance [52]. Another study also aimed to pre-
dict mortality after the Norwood procedure; however, it
did not use the type of Norwood procedure as a predic-
tor, yet still managed to obtain an accuracy of 88% for the
prediction of mortality [33]. It should also be noted the
extreme gradient boosting machine model developed by
Du et al. _which included a large variety of procedures_
did not attribute a significant predictive value to the type
of procedure [48]. Additionally, STS-EACTS scores _
estimates of the mortality risk associated with each type
of congenital cardiac procedure_were also found to be
highly predictive of mortality by some studies [53, 54].
Whether the type of procedure can be used to correctly
predict mortality after congenital heart surgery requires
more extensive investigations, yet it seems to be promis-
ing in the few instances where it has predictive value.

The application of age in the predictive models was
rather heterogeneous, with some finding gestational age
[52] and age at first extubation [52] as a significant pre-
dictor, while others found the age at the time of surgery
to be an important predictor [27, 31, 40, 48, 53]. One
study by Chang Junior et al., however, found a maximum
of 2.7% predictive importance for age at the time of the
procedure [37]. This factor similar to the previous one
is also in accordance with the literature as a large study
found increasing levels of age lower the likelihood of
mortality [63]. The utilization of this predictor also shows
promise.

Weight at the time of surgery was highly predictive in
some instances [27, 31, 40, 47, 53], while in a model by

Chang Junior et al. [37] showed rather diminished pre-
dictive value. This model however found height and BMI
to be of high importance in their algorithms, suggesting
that weight on its own may not be a reliable predictor
and lacks generalizability. The value of weight as a predic-
tor, much like the previous factors, is also evident in the
literature [64].

The diagnostic group was also identified to be an
important predictor of mortality by some studies [27,
31, 37]. Among the anomalies, univentricular heart sta-
tus [27, 31] and by extension, hypoplastic left heart syn-
drome (HLHS) were found to be important predictors of
mortality. Crowe et al. [27] classified patients with HLHS
and pulmonary atresia with an intact ventricular septum
as high risk groups for mortality, which was also cor-
roborated by Rogers et al. [31]. Both studies also found
that univentricular heart status is a separate indicator of
30-day mortality. In addition, Chang Jr. et. al. not only
found that diagnostic groups are a significant predictor,
they identified HLHS status as a separate significat pre-
dictor as well [37]. This finding is in alignment with the
previous literature, which has often found univentricular
heart anomalies to be the most fatal among congenital
heart anomalis [65, 66].

Patient height at surgery [37], previous ICU admis-
sion [37], gender [33, 53], usage of cardiopulmonary
bypass [27, 31], Down syndrome status [27], presense of
congenital or acquired comorbidities [31], severity of ill-
ness [31], digoxin use at discharge [52], atrial shunt [48],
and cardiopulmonary bypass time [52] were also notable
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predictors among the models for mortality prediction,
yet these findings were only exclusive to one model or
two models and were not found of considerable value in
the other included models.

All in all, we observed an exceptional performance
among the AI models predicting mortality in patients
undergoing congenital heart surgeries; however, more
studies need to be conducted in this area in order to per-
form quantitative synthesis and objectively measure their
performance.

The area under the curve for studies predicting cardiac
complications was more heterogeneous than mortality,
with a range of 0.71 to 0.95. We observed that models
tasked with predicting a broader spectrum of complica-
tions rather than a specific cardiac complication had a
lower AUC. Furthermore, the sensitivity of predictions
ranged from 0.34 in an LR model to 0.791 in an extreme
gradient boosting model, both by Zeng et al. [44] Speci-
ficity of the models predicting complications was not
reported. As for the predictors used in cardiac compli-
cations, birth weight [49], weight at surgery [44], gesta-
tional age [49], age at surgery [34, 49], cardio-pulmonary
bypass time [41, 44], ECG variables [42], heart rate [35,
42], echocardiographic variables [34, 41, 49] and post-
surgery oxygen pressure [41, 44, 49] were all important
predictors. Echocardiographic variables, such as left ven-
tricular ejection fraction [34], right ventricular global
strain [41], and right pulmonary artery Z score [49], have
been shown to correctly foretell cardiac complications
[67] and due to the ubiquitous and simple nature of echo-
cardiography, these variables can be of immense value in
predicting cardiac complications.

Another intriguing aspect with regard to cardiac mor-
bidity and mortality is the notable superiority of Al to
traditional prediction models. Zeng et al. demonstrated
that the model they produced using extreme gradient
boosting achieved a higher AUC compared to univariable
logistic regression models of Aristotle’s Basic Complexity
(ABC) score, STS-EACTS mortality and morbidity score,
and RACHS-1 [44], indicating the potential superiority of
an Al model to the tools currently available to clinicians.
In addition, a systematic review assessing the ability of
these risk stratification systems to predict morbidity
and mortality found that the AUC of ABC ranges from
0.59 to 0.743, the AUC of RACHS-1 ranges from 0.68 to
0.782, and the AUC of STS-EACTS score from 0.732 to
0.8 [68]. Given the fact that Al models consistently dem-
onstrate AUCs higher than the numbers stated, adopting
them would likely assist surgeons in better risk stratifica-
tion and decision-making. This is notable as risk stratifi-
cation tools play a crucial part in reducing the morbidity
and mortality of patients undergoing congenital heart
surgery [68]. More investigations are needed to compare
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and validate AI prediction models against traditional
ones. Furthermore, to implement these models clinically,
traditional machine learning models should be optimized
with as few features as possible in order to require lower
computational power [69], and models should be trained
and externally validated on larger sets of data to maxi-
mize the predictive ability before commercialization.

The area under the curve for length of stay predictive
models was even more heterogeneous than the previ-
ous outcomes, ranging between 0.54 to 0.95. Sensitivity
also ranged from 0.32 in an LR model to 0.91 in a deep
neural network, both developed by Jalali et al. [46]. The
specificity of the models predicting length of stay was
not reported. Variables associated with increased length
of stay were unfortunately not provided in detail by the
included models, yet Bertsimas et al. [40] found that the
type of procedure, days since previous admission, weight,
and age were all significant predictors of prolonged
length of hospital stay. Moreover, Chang Jr. et al. found
that mechanical ventilation time, weight, previous ICU
admission, vasoactive-inotropic score, and height were
significant predictors of prolonged length of IC stay [58].

This pattern of AUC appears to show artificial intel-
ligence predictive models are more geared toward pre-
dicting singular binary outcomes, yet newer machine
learning algorithms perform better than logistic regres-
sion models in this regard. This is evident in the few
instances they were compared in the included studies
[40, 44, 46, 52].

While most of the included articles did not focus on a
specific CHD, outcomes in patients with single ventricle
physiology (n=8) and TOF (n=4) were the most inves-
tigated. The management of patients with single-ven-
tricle physiology is an intricate process, as not only do
single-ventricle defects vary greatly in anatomical sub-
types, but surgical palliation is undertaken in multiple
stages [70]. As such, precise prediction models for post-
operative outcomes in these patients are invaluable. Al
models can predict postoperative complications [35, 42]
and 1-year mortality [33, 46] with great accuracy. These
results could not be replicated when predicting interstage
mortality_i.e. mortality occurring between the first and
second stages of the Norwood procedure_ as the AUC of
neither the mortality-predicting models of Sunthankar
et al. nor Smith et al’s survival-predicting model sur-
passed 70% [52, 60]. Among the studies in patients with
TOE, the reports were more divergent with respect to
the measured outcome, yet complications, mortality, and
indices of heart function have been successfully predicted
by Al models [29, 34, 41, 49].

Our systematic review has several limitations. First, by
the nature of congenital heart defects, the patient popula-
tions used to develop the models are quite heterogeneous.
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As a result, unless the models are specialized in one spe-
cific type of defect, very large sample sizes are needed to
develop reliable AI models, a condition that was not met
by some of the included studies. In addition, mainly due to
the heterogeneous and incomplete reporting of the analy-
ses conducted to develop the Al models, the quality of
most of the included studies was either low or unclear. We
suggest that future studies report the steps of model devel-
opment thoroughly to avoid this issue. External validation
_ i.e. evaluating the developed model on a separate original
data set different than the one used to train and test the
model_ was not used in most of the included studies in our
review. Doing so is important to assess the realistic appli-
cability of predictive models [71] and without this process,
we cannot say how practical these models can be in the
healthcare system, therefore more studies are needed to
validate our findings. Another important point that was
ignored by most of the included reports was first ensuring
that the model was calibrated and second, reporting quan-
titative measures of calibration of the model in addition
to plots. In addition, the high rate of heterogeneity among
methods, outcomes, and participants did not allow us to
perform a meta-analysis on any of the outcomes.

Conclusion

The implementation of artificial intelligence in congenital
heart surgery has resulted in the creation of many pre-
dictive models that have the potential to change the land-
scape of clinical outcome prediction. When assessing the
risk of postoperative morbidity and mortality, these AI-
generated predictive models demonstrate superior per-
formance compared to traditional risk prediction models.
Their applicability, however, is not limited to the immedi-
ate risk of complications after surgery and encompasses
long-term outcomes such as 1-year mortality and malnu-
trition. This systematic review provides a comprehensive
report on such models and can serve as a bedrock to con-
duct future studies with more insight into the field.
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