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Introduction
Despite the decline in fine particulate matter (PM) levels 
in recent years, PM2.5 still leads to 1  million premature 
deaths annually [1]. Previous studies have demonstrated 
that PM2.5 can trigger oxidative stress, inflammatory 
injury, immune response, and insulin resistance (IR) [2]. 
A positive correlation has been observed between expo-
sure to PM2.5 and adverse outcomes such as lung cancer, 
stroke, preterm birth, and cardiovascular diseases (CVD) 
[3–6].

The triglyceride-glucose (TyG) index has been 
employed to assess the body’s insulin sensitivity [7, 8]. It 
is not only associated with the incidence and prognosis 
of different types of diabetes, obesity, and CVD but also 
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Abstract
Context The triglyceride-glucose (TyG) index, a novel health indicator, has been widely employed to assess insulin 
resistance (IR). However, its relationship with fine particulate matter (PM) exposure remains inadequately investigated.

Objective This study endeavors to probe the association between PM2.5 and TyG within the population of eastern 
China and to determine whether there are disparities in this association among diverse subgroups.

Methods We conducted an ecological study on a cohort comprising 39,011 individuals who had undergone at least 
two physical examinations between 2017 and 2019 at the First Affiliated Hospital of Nanjing Medical University, China. 
TyG levels concerning short-term PM2.5 exposure were examined using a generalized additive model.

Results In the overall population, at lags of 0–7 and 0–14 days in the single-pollutant model, it was observed that 
a 10 µg/m3 rise in PM2.5 corresponded to a 0.0021 elevation in TyG levels. In the multi-pollutant models, at 0–7 and 
0–14 days lags, a comparable increase in PM2.5 resulted in an increase in TyG of 0.0073 and 0.0044, respectively. The 
association remained significant in the subgroup analyses.

Conclusion PM2.5 exposure is related to the TyG index. Controlling air pollution might contribute to maintainin 
normal lipid metabolism function.
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increases the risk of all-cause death and CVD mortality 
[9–13]. In addition, in cohorts of people with primary 
and secondary prevention for CVD, the TyG index can 
also be utilized as a biomarker to forecast the occurrence 
and prognosis of the disease [9].

Previous research has demonstrated that exposure 
to PM2.5 can increase the level of fasting blood glucose 
(FBG) and decrease the level of triglyceride (TG) [14, 
15]. We hypothesized that PM2.5 and TyG may have a 
particular association, but it has not been thoroughly 
examined. Thus, we conducted an ecological study on 
a cohort of individuals in eastern China to explore the 
association between PM2.5 and the TyG index, and to 
determine whether this relationship varies among differ-
ent subgroups.

Subjects and methods
Study population
We recruited a cohort of 39,011 subjects who partici-
pated in regular physical examinations at the First Affili-
ated Hospital of Nanjing Medical University between 
2017 and 2019. They should (a) possess at least two 
repeated physical examination records, and (b) have 
results of lipid-related indicators and blood glucose tests. 
The exclusion criteria were as follows: subjects who (a) 
suffered from mental illness, (b) had severe occupational 
exposure, or (c) were unable to provide complete data 
required for the study. We collected their demographic 
characteristics, medical history, smoking status, meno-
pausal status, and occupational status.

Environmental exposure
We collected the daily concentrations of six ambient air 
pollutants in Nanjing from the China Air Quality Online 
Monitoring and Analysis Platform  (   h t t p s : / / w w w . a q i s t u d 
y . c n /     ) during the period from 2016 to 2019. There were 
thirteen fixed-site air monitoring stations in Nanjing. 
We mainly focused on six types of air pollutants, namely 
PM2.5(µg/m3), PM10(µg/m3), NO2(µg/m3), SO(µg/m3), 
CO(mg/m3), and O3(µg/m3). Additionally, we collected 
information on local meteorological factors, including 
daily average temperature (°C) and daily average relative 
humidity (%) through the National Meteorological Data 
Sharing Center (http://data.cma.cn/).

Definitions
The TyG index was calculated using the following for-
mula: TyG = ln [TG (mg/dl) ∗ FBG (mg/dl) /2] [16, 
17]. Individuals with a body mass index (BMI) less than 
24  kg/m2, were classified as underweight or normal 
weight, whereas those with a BMI was greater than 24 kg/
m2 were defined as overweight. Smoking history was cat-
egorized into three groups: never, current, and former 
[18]. Based on the nature of the company and workplace, 

occupational status was classified into four groups: 
laborer, professional/executive, sales, and others. We 
regarded the season as constant if an individual under-
went two physical examinations during the same season. 
However, if the physical examinations took place in dif-
ferent seasons, it was assumed that a seasonal change had 
occurred [14]. The remaining definitions are provided in 
Supplementary Methods 1.

Statistical analysis
Considering that exposure to PM2.5 often results in lag 
effects on health outcomes [14, 19], we applied the gen-
eralized additive model (GAM) to analyze the short-term 
lag effects of PM2.5 on health outcomes [20]. Differences 
in TyG levels exhibited an approximately normal distri-
bution. Thus, to examine the impact of short-term PM2.5 
exposure on TyG, GAM of the Gaussian distribution 
family was adopted. Supplementary Methods 2 describes 
how the GAM was constructed [21].

We incorporated the findings from previous research 
conducted by our group, such as the studies by stud-
ies by Zhang M et al. [14] and Liu Q et al. [15], which 
demonstrated that the health effects of PM2.5 were only 
observed at lags of 0–7, 0–14, 0–21, and 0–28 days, along 
with the characteristics of the lagged effects of PM2.5 
exposure on health [22, 23]. Consequently, specific times 
were selected for analysis. By determining the concentra-
tion of PM2.5 at lags of 0–7 days, 0–14 days, 0–21 days, 
and 0–28 days, the possible lag effects of PM2.5 were 
evaluated.

Both the single-pollutant and multi-pollutant models 
were established. The covariates adjusted in the single-
pollutant models encompassed age, sex, BMI, smoking 
status, seasonal change, intervals between physical 
examinations, meteorological parameters, and occupa-
tional status. Building upon this, other air pollutants that 
excluded the problem of multicollinearity were incorpo-
rated as covariates to formulate the multifactorial pol-
lutant models [14]. Age and BMI were determined by 
averaging two measurements. The differences between 
the two measurements for TG and FBG levels and envi-
ronmental factors indicated changes over the study 
period.

Spearman rank correlation analysis was employed to 
identify, the multicollinearity of environmental factors. 
If the absolute value of the correlation coefficient |r|≥0.7, 
the corresponding variable was removed; if |r| <0.7, it 
was retained in the model [24, 25]. Sensitivity studies 
were conducted to evaluate the stability of the relation-
ships between PM2.5 and TyG. Firstly, the relationship 
of PM2.5 with TyG was reanalyzed within the subgroup 
of the healthy population. Secondly, we separately con-
structed the PM2.5 single-pollutant and multi-pollutant 
models. Thirdly, in order to control for confounders 
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related to occupational exposure, we classified occupa-
tional status into four categories.

Subgroup analyses were carried out to assess the 
potential influence of age, sex, smoking history, BMI, 
and menopausal status on the association between 
PM2.5 and TyG. Additionally, heterogeneity testing 
among subgroups was performed using the formula 
| β 1 − β 2|/

√
SE12 + SE22, where β1 and β2 repre-

sent estimated effects, and SE1 and SE2 denote standard 
errors. A statistically significant difference was indicated 
by a value exceeding 1.96 [26]. Data analyses were con-
ducted with R version 4.3.1 with a significance level set 
at 0.05.

Results
General characteristics of the study population
As shown in Table  1, a total of 39,011 individuals were 
enrolled in our study, among whom 22,598 (57.93%) 
were males and 16,413 (42.07%) were females. Specifi-
cally, there were 33,126 nonsmokers (84.91%), 5,291 cur-
rent smokers (13.56%), and 597 former smokers (1.52%). 
At baseline, the mean age was 44.72 years, and the mean 
BMI was 23.84  kg/m2. The average TyG levels at base-
line and during the second physical examination were 
8.62 and 8.64, respectively. After excluding individuals 
with diabetes (n = 1,272, 3.26%), hypertension (n = 5173, 
13.26%), and coronary heart disease (CHD) (n = 522, 
1.34%), a healthy group composed 33,130 individuals 
(84.92%) was identified for subgroup analysis.

Environmental factors
Table 1 presents the median daily average concentrations 
of air pollutants. The values are 34.00  µg/m3 for PM2.5, 
65.00 µg/m3 for PM10, 39.00 µg/m3 for NO2, 10.00 µg/m3 
for SO2, 0.80 mg/m3 for CO, and 69.00 µg/m3 for O3. The 
average temperature recorded was 17.20 °C, and the aver-
age relative humidity was 73.00%.

The results of Spearman rank correlation analysis are 
presented in Table  2. In this table, the r-value between 
PM10 and PM2.5 was 0.91, and the r-value between NO2 
and PM2.5 was 0.70. As a consequence, PM10 and NO2 
were excluded from the multi-pollutant models.

Exposure-response curves for PM2.5 and TyG
The exposure-response curves of both the single-pollut-
ant and multi-pollutant models exhibited a linear trend 
at lags of 0–7 days and 0–14 days in both the entire popu-
lation and the subgroup of the healthy population (Figs. 1 
and 2). However, the curves showed inverted parabolic 
shapes at lags of 0–21 days and 0–28 days. Moreover, a 
flat trend was noticed when the difference in PM2.5 con-
centration was 0 µg/m3.

Table 1 Demographic characteristics of the study population
Characteristics Statistics
Sex
 Male, n(%) 22,598(57.93%)
 Female, n(%) 16,413(42.07%)
Age (years)
 Agea, mean ± SD 44.72 ± 14.53
 Ageb, mean ± SD 45.70 ± 14.53
Menopausal c

 Premenopausal, n(%) 11,507(70.11%)
 Postmenopausal, n(%) 4906(29.89%)
BMI (Kg/m2)
 BMIa, mean ± SD 23.84 ± 3.44
 BMIb, mean ± SD 23.98 ± 3.23
Smoking
 Never, n(%) 33,126(84.91%)
 Current, n(%) 5291(13.56%)
 Former, n(%) 594(1.52%)
Hypertension
 Yes, n(%) 5173(13.26%)
 No, n(%) 33,838(86.74%)
Diabetes
 Yes, n(%) 1272(3.26%)
 No, n(%) 37,739(96.74%)
TyG
 TyGa, mean±(SD 8.62 ± 0.61
 TyGb, mean ± SD 8.64 ± 0.59
Interval time (days), mean ± SD 366.97 ± 50.34
CHD
 Yes, n(%) 522(1.34%)
 No, n(%) 38,489(98.66%)
Seasonal change
 Yes, n(%) 12,239(31.37%)
 No, n(%) 26,772(68.63%)
Occupation status
 Laborer, n(%) 2210(5.67%)
 Professional/executive/, n(%) 22,672(58.12%)
 Sales, n(%) 13,595(34.85%)
 Other types, n(%) 534(1.37%)
PM2.5 (µg/m3), mean ± SD 41.47 ± 29.11
PM10(µg/m3), mean ± SD 76.36 ± 44.36
SO2(µg/m3), mean ± SD 11.64 ± 5.78
NO2(µg/m3), mean ± SD 43.55 ± 18.32
O3(µg/m3), mean±(SD 78.75 ± 42.51
CO(mg/m3), mean ± SD 0.86 ± 0.31
Temperature (°C), mean ± SD 16.83 ± 9.26
Relative humidity (%), mean ± SD 72.85 ± 14.39
a The first time that people participated in routine physical examinations
b The second time that people participated in routine physical examinations
c Only female subjects

Note TyG refers to the triglyceride-glucose index, and CHD stands for coronary 
heart disease
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Association of PM2.5 with TyG
In both single-pollutant and multi-pollutant models, 
an increase of 10  µg/m³in PM2.5 was associated with 
an increase in TyG. In the entire population, within the 
single-pollutant models, TyG increased by 0.0021 at 0–7 
days and 0.0021 at 0–14 days. In the multi-pollutant 
models, it increased by 0.0073 and 0.0044, respectively 
(Table  3). In the subgroup population, for the single-
pollutant models, the TyG increased by 0.0025 at 0–7 
days and by 0.0026 at 0–14 days. In the multi-pollutant 
models, it increased by 0.0075 and 0.0046, respectively 
(Table  3). These associations remained significant after 
adjusting for occupational status in the sensitivity analy-
ses (Supplementary Table 1).

Subgroup analysis
Subgroup analyses were conducted to investigate the 
relationship between PM2.5 and TyG in different groups 
categorized by sex, age, smoking history, BMI, and meno-
pausal status. In the entire population, a significant asso-
ciation between PM2.5 and TyG was observed in various 
sex subgroups at lags of 0–7 days and 0–14 days. Specifi-
cally, at a lag of 0–7 days, PM2.5 showed a significant asso-
ciation with TyG across different age and BMI subgroups. 
Furthermore, within the healthy population subgroup, 
PM2.5 displayed a significant association with TyG across 
sex, age, and BMI subgroups at a lag of 0–7 days (Tables 4 
and 5; Fig. 3). Since only 1.52% of the participants were 
former smokers, we did not take former smokers into 
account in the subgroup heterogeneity effect analysis. 
Only heterogeneity between subgroups of menopausal 
status was observed at lags of 0–7 days and 0–14 days 
in the entire population (Supplementary Table 2). This 
might be attributed to the fact of premenopausal females 
have higher estrogen levels than postmenopausal females 
and that PM2.5 possesses estrogenic activity [27–29].

Discussion
Our study revealed that TyG levels were positively cor-
related with PM2.5 concentrations in a cohort of the 
Chinese population that repeatedly underwent physical 
examinations. To the best of our knowledge, this is one 

of the most extensive population-based cohort studies 
exploring the relationship between PM2.5 and TyG levels.

TyG not only reflects IR, but also predicts the risk of 
CVD and is related to sudden cardiac arrest [30, 31]. 
Exposure to PM2.5 can induce lung oxidative stress, 
prompt unique changes in lipid composition, increase 
fatty acids like palmitic acid esters, myristate esters, and 
palmitoyl esters, and result in blood vessel damage [32–
34]. In a cohort study of 76 healthy elderly individuals in 
China [35], it was demonstrated that PM2.5 was positively 
associated with elevated IR index assessed by the homeo-
stasis model and the insulin action index. Li et al. also 
reported that increased exposure to PM2.5 was associated 
with an increased risk of CVD mortality [36].

Although only a limited number of studies have directly 
demonstrated the association between PM2.5 exposure 
and the TyG index, a large quantity of research, like the 
ones described above, has indicated that an increased 
PM2.5 concentration is a risk factor for elevated IR and 
a high incidence of CVD. For this reason, our findings 
that short-term exposure to PM2.5 is positively correlated 
with TyG levels were somewhat consistent with previous 
studies.

After inhalation, PM2.5 mainly deposits in the lungs. 
The body then releases inflammatory factors such as 
nitric oxide and interleukins, which trigger an inflamma-
tory response [37]. Systemic inflammatory responses and 
oxidative stress are signaling abnormalities that charac-
terize IR [38]. In a mouse model, PM2.5 exacerbates IR 
by inhibiting the insulin-PI3K-Akt signaling pathway in 
the liver, resulting in increased FBG levels and conse-
quently a higher TyG index. In addition, PM2.5 can also 
enter the gastrointestinal tract, carrying microorganisms 
that induce a pro-inflammatory response in the immune 
system, increase intestinal permeability, and disrupt the 
balance of gut microbiota. These effects may contribute 
to the development of IR and elevate FBG levels, subse-
quently increasing the TyG index [39, 40]. Additionally, 
IR impairs lipid metabolism, resulting in increased fatty 
acid release and enhanced triglyceride synthesis in the 
liver and adipose tissue [41].Moreover, exposure to PM2.5 
significantly affects sphingolipid metabolism. An animal 

Table 2 Spearman correlation coefficient between the meteorological factors and air pollutant concentrations
PM2.5 PM10 SO2 NO2 O3 CO Temperature Relative humidity

PM2.5 1 0.9067* 0.5103* 0.7024* -0.2156* 0.6556* -0.4885* -0.1808*
PM10 1 0.6607* 0.7712* -0.1285* 0.6307* -0.4123* -0.4392*
SO2 1 0.6273* -0.0085* 0.6425* -0.2131* -0.5633*
NO2 1 -0.3283* 0.6311* -0.4594* -0.3152*
O3 1 -0.1820* 0.5776* -0.2990*
CO 1 -0.2413* -0.0999*
Temperature 1 0.0931*
Relative humidity 1
*: P < 0.05
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Fig. 1 The exposure-response curves for the effects of PM2.5 on the triglyceride-glucose index in the entire population. The x-axis represents the differ-
ence value of PM2.5 at different lag times, while the y-axis represents the contribution of the smooth term to the fitted values. A: Single-pollutant model; 
adjusted for the interval time, sex, age, BMI, smoking status, occupational status, season, temperature, and relative humidity. B: Multipollutant model; 
adjusted for SO2, O3, and CO based on single-pollutant models. Note With lags of 0–21 days and 0–28 days, as the difference in PM2.5 concentration in-
creases, the curve shows a trend of first rising and then falling, peaking around ‘0’. This indicates a non-linear relationship between TyG and PM2.5 exposure 
response as the lag time increases
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Fig. 2 The exposure-response curves for the effects of PM2.5 on the triglyceride-glucose index in the healthy population. The x-axis represents the differ-
ence value of PM2.5 at different lag times, while the y-axis represents the contribution of the smooth term to the fitted values. A: Single-pollutant model; 
adjusted for interval time, sex, age, BMI, smoking status, occupational status, season, temperature, and relative humidity. B: Multipollutant model; adjusted 
for SO2, O3, and CO based on single-pollutant models. Note: With lags of 0–21 days and 0–28 days, as the difference in PM2.5 concentration increases, the 
curve shows a trend of first rising and then falling, peaking around ‘0’. This indicates a non-linear relationship between TyG and PM2.5 exposure response 
as the lag time increases
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study demonstrated that sphingolipids play an essential 
role in the development of IR [42]. Studies also indicated 
that PM2.5 may impact the voltage-gated chloride channel 
Clcn1, influence muscle contraction pathways and con-
tribute to dyslipidemia, consequently increasing the TyG 
index [43, 44].

PM2.5 exhibits a lag effect on TyG-related indicators, 
such as FBG and TG [14, 45]. Therefore, our study inves-
tigated the influence of PM2.5 exposure on TyG across 
four specific lag periods. We noticed a significant impact 
of PM2.5 exposure on TyG in both the overall population 
and the subgroup of healthy individuals, particularly at 

lag periods of 0–7 days and 0–14 days. However, some 
studies in the general population have shown a weak 
correlation between the TyG index and coronary artery 
calcification burden, with no association with mortality, 
suggesting the need for more comprehensive research 
[46, 47]. Considering that environmental pollutants are 
usually mixed in nature, we adopted the multi-pollutant 
models by taking CO, O3, and SO2 into account. Incor-
porating these pollutants significantly strengthened the 
relationship between PM2.5 and TyG levels. This might 
be explained by the fact that exposure to O3 and SO2 can 
increase TyG levels [48, 49], which enhances the effects 

Table 3 Estimated changes (95% confidence intervals) in triglyceride-glucose index levels for a 10 µg/m3 increase in PM2.5

Lag time Entire population Normal population
Single modela Multi-modelb Single modela Multi-modelb

Lag0-7 days 0.0021(0.0004,0.0039) 0.0073(0.0051,0.0095)c 0.0025(0.0008,0.0044) 0.0075(0.0050,0.0098) c

Lag0-14 days 0.0021(-0.0004,0.0046) 0.0044(0.0016,0.0073)c 0.0026(0.0001,0.0050) 0.0046(0.0019,0.0076) c

Lag0-21 days 0.5106(0.0604,0.9608) 0.3930(-0.0927,0.8787) c 0.4675(0.0117,0.9233) 0.3442(-0.1496,0.8380) c

Lag0-28 days 1.7470(1.288,2.2047) 0.9589(0.4652,1.4526) c 1.7080(1.2251,2.1908) 0.9518(0.4311,1.4726) c
a Adjusted for the interval time, sex, age, BMI, smoking history, season, temperature, and relative humidity
b Adjusted for SO2, O3, and CO based on the single-pollutant models
c The results between the single-pollutant and multi-pollutant models were significantly different (P < 0.05)

Table 4 Estimated changes (95% confidence intervals) in triglyceride-glucose index levels for a 10 µg/m3 increase in PM2.5 among the 
entire populationa

Characteristic Categorization Lag 0–7 days Lag 0–14 days Lag 0–21 days Lag 0–28 days
Sex Male 0.0071(0.0041,0.0101) 0.0050(0.0010,0.0089) 0.5589 (-0.1578,1.2755) 0.9927(0.2933,1.6921)

Female 0.0084(0.0052,0.0015) 0.0041(0.0001,0.0082) 0.2020(-0.4456,0.8496) 1.0640(0.3584,1.7697)
Smoking Never 0.0067(0.0044,0.0091) 0.0038(0.0007,0.0068) 0.3391(-0.1809,0.8591) 0.9498(0.4206,1.4790)

Current 0.0115(0.0053,0.0177) 0.0099(0.0016,0.0181) 0.9072(0.1033,1.7111) 1.1862(-0.1722,2.5447)
Former -0.01576(-0.0385,0.0070) -0.0239 (-0.0524,0.0046) -0.2805(-2.8176,2.2566) -1.3732 (-4.8567,0.2110)

Age(years) < 65 0.0070(0.0047,0.0092) 0.0045 (0.0016,0.0075) 0.4116(-0.0935,0.9162) 0.9714 (0.4561,1.4866)
≥ 65 0.0099 (0.0011,0.0187) 0.0037(-0.0083,0.0156) -0.5678(-2.4966,1.3600) 0.2252 (-1.8467,2.2971)

BMI(kg/m2) < 24 0.0077(0.0049,0.0105) 0.0033(-0.0003,0.0069) 0.1690 (-0.4290,0.7670) 0.9295 (0.2931,1.5660)
≥ 24 0.0068(0.0033,0.0102) 0.0057(0.0012,0.0102) 0.5460(-0.2386,1.3305) 1.0630 (0.2854,1.8407)

Menopausal Premenopausal 0.0104(0.0067,0.0141) 0.0067(0.0021,0.0114) 0.3216(-0.4240,1.0672) 1.2410(0.4230,2.0582)
Postmenopausal 0.0014(-0.0053,0.0081) -0.0053(-0.0138,0.0032) -0.5550(-1.7592,0.64593) 0.3364(-1.0267,1.6995)

a The analyses were based on multipollutant models

Table 5 Estimated changes (95% confidence intervals) in triglyceride-glucose index levels for a 10 µg/m3 increase in PM2.5 among the 
normal population a

Characteristic Categorization Lag 0–7 days Lag 0–14 days Lag 0–21 days Lag 0–28 days
Sex Male 0.0066(0.0033,0.0099) 0.0040 (-0.0003,0.0083) 0.3800 (-0.3664,1.1264) 0.8401(0.0867,1.5935)

Female 0.0093(0.0060,0.0126) 0.0054 (0.0012,0.0096) 0.3378(-0.3312,1.0067) 1.1410(0.4109,1.8719)
Smoking Never 0.0072(0.0047,0.0096) 0.0044 (0.0012,0.0076) 0.3255 (-0.2025,0.8535) 0.9815(0.4233,1.5397)

Current 0.0010(0.0036,0.0167) 0.0065(-0.0024,0.0153) 0.1590(-1.2249,1.5428) 0.6858(-0.7706,2.1421)
Former -0.0067(-0.0331,0.0197) -0.0196 (-0.0527,0.0134) -1.9815 (-5.8660,1.9093) -1.958(-5.8162,1.9007)

Age(years) < 65 0.0074(0.0050,0.0097) 0.0048(0.0017,0.0078) 0.3781(-0.1271,0.8832) 0.9779(-0.4438,1.5120)
≥ 65 0.0116(-0.0010,0.0243) 0.0084 (-0.0084,0.0253) 0.0054(-2.1739,2.1847) 0.5608(-1.8497,2.9713)

BMI(kg/m2) < 24 0.0078(0.0049,0.01066) 0.0036 (-0.0001,0.0073) 0.2271(-0.3880,0.8422) 0.9547(0.0300,1.6096)
≥ 24 0.0071(0.0033,0.0109) 0.0059(0.0009,0.0108) 0.5014(-0.3258,1.9174) 1.0500(0.1927,1.9066)

Menopausal Premenopausal 0.0107(0.0070,0.0144) 0.0072(0.0026,0.0118) 0.3735(-0.3778,1.1248) 1.2940(0.4710,2.1177)
Postmenopausal 0.0035(-0.0041,0.0110) -0.0021(-0.0117,0.0074) -0.0330(-1.3945,1.3285) 0.6145(-0.9125,2.1415)

a The analyses were based on multipollutant models
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of PM2.5. Although the relationship between CO and TyG 
has not well-established, Gao’s findings in Beijing dem-
onstrated a positive correlation between the risk of CHD 
and the concentrations of PM2.5, SO2, and CO [50], which 
may partly explain the association between CO and TyG.

Our research can assist clinicians in identifying IR 
among individuals affected by air pollution, particu-
larly when there are no obvious symptoms of diabetes 
[51]. Regular monitoring of the TyG index enables early 
preventive interventions to slow or reverse the develop-
ment of IR. Additionally, our research may promote the 
development of personalized treatment strategies for 
metabolic abnormalities induced by air pollution. For 

individuals with elevated TyG indices, improving air 
quality and adopting lifestyle modifications may help 
reduce IR and alleviate CVD risk [52, 53].

The effect of PM2.5 on TyG was observed at lags of 0–7 
and 0–14 days, when stratified by sex and at a lag of 0–7 
days when stratified by BMI. With the prolonged lag 
time, the correlation became nonsignificant in each sub-
group. This suggests that TyG is more likely to be affected 
by short-term exposure to PM2.5. No heterogeneity was 
observed between subgroups except for those related to 
menopausal status. In the entire population, the effect of 
PM2.5 was more pronounced in premenopausal females 
at lags of 0–7 days and 0–14 days. We speculate that this 

Fig. 3 Subgroup analysis of the estimated changes (95% confidence intervals) in triglyceride-glucose index levels. A: Entire population; adjusted for the 
interval time, sex, age, BMI, smoking status, occupational status, season, temperature, relative humidity, SO2, O3, and CO. B: Healthy population; adjusted 
for the interval time, sex, age, BMI, smoking status, occupational status, season, temperature, relative humidity, SO2, O3, and CO. Note. “Prem” stands for 
premenopausal, and “Postm” stands for postmenopausal
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might be due to the higher estrogen levels in premeno-
pausal women, which alters the effect of PM2.5 exposure 
on TyG [27–29]. However, this hypothesis requires fur-
ther investigation. In the sensitivity analysis shown in 
Supplementary Table 1, we found that the lag effect still 
weakens as the lag time prolongs. This reminds us to 
pay more attention to the short-term effects of air pol-
lutants. It has been suggested that overweight individu-
als are more susceptible to PM2.5 [54–56]. Overweight 
individuals may exhibit higher resting tidal volume and 
minute ventilation, potentially leading to elevated PM2.5 
inhalation rates [57]. However, in our subgroup analysis 
by BMI, there was no heterogeneity among the groups at 
a lag of 0–7 days. This might be related to differences in 
study populations and regions as well as some interaction 
between BMI and TyG.

Our study acknowledges several inherent limitations. 
First, the environmental data obtained from fixed moni-
toring stations may not accurately capture individual 
exposure levels, thereby potentially obscuring the inter-
personal variations in exposure. Second, although our 
dataset is relatively comprehensive, it does not encom-
pass crucial variables such as drinking history, physical 
activity, socioeconomic status, dietary habits, or blood 
concentrations of lead and cadmium—factors that Tai J et 
al. [58] have demonstrated to be correlated with the TyG 
index. Finally, owing to the inherent limitations of eco-
logical studies, the conclusions drawn may not always be 
completely reliable or accurate. Further rigorous research 
is required to validate any potential causal relationships.

Conclusion
The TyG index was positively correlated with short-term 
PM2.5 exposure, and this relationship did not vary across 
subgroups except for that of the menopausal status sub-
groups. Our findings suggest that controlling air pollu-
tion is essential for cardiovascular disease prevention. 
To alleviate this risk, we recommend the implementation 
of stricter air quality regulations, the promotion of clean 
energy, and the development of urban green spaces. Pub-
lic health campaigns that raise awareness of the impact 
of air pollution on lipid metabolism could further assist 
in reducing exposure and improving overall health 
outcomes.
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