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inactivity, tobacco use, alcohol, and air pollution. Heart 
failure, stroke, and heart attacks are more likely in people 
with intermediate risk factors. In Cleveland, unhealthy 
diets, smoking, alcohol, fat, and tobacco use contribute 
to a 50–60% mortality rate [2]. In Hungary, cardiovas-
cular diseases are among the most common causes of 
death, with 60,000 deaths annually [3]. In Switzerland, 
cardiovascular disease and cancer were the most com-
mon killers in 2022 [4]. Comprehensive datasets from 
Cleveland, Hungary, Switzerland, Long Beach, and Stat-
log demonstrate the global burden of cardiac disease and 

Introduction
Cardiovascular disorders (CVDs) are the primary cause 
of mortality worldwide, resulting in 17.9  million deaths 
per year. Heart attacks and strokes are the leading causes, 
with one-third occurring prematurely in people under 
70 [1]. Behavioral risk factors include unhealthy diet, 
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Abstract
Cardiovascular disease is the leading cause of mortality globally, necessitating precise and prompt predictive 
instruments to enhance patient outcomes. In recent years, machine learning methodologies have demonstrated 
significant potential in enhancing the precision and efficacy of health-related predictions, especially in the 
identification of heart disease. The dataset used in this study came from the UC Irvine Machine Learning 
Repository and included data from Cleveland, Switzerland, Hungary, Long Beach, and Statlog. We selected seven 
of the 1,190 cases, each with 12 attributes, for analysis. We used different machine learning models, like Random 
Forest, K-Nearest Neighbors, Logistic Regression, Naïve Bayes, Gradient Boosting, AdaBoost, XGBoost, and Bagged 
Trees, to check performance using accuracy, precision, recall, F1-score, and ROC-AUC. K-fold cross-validation 
(K = 10, K = 5) was conducted to guarantee the robustness and generalizability of these models. Random Forest 
exhibited remarkable stability, attaining 94% accuracy with K = 10 and 92% with K = 5, whereas XGBoost had a 
minor decrease during cross-validation (90% for K = 10, 89% for K = 5). KNN demonstrated possible overfitting, 
evidenced by a notable decline in accuracy (71% for K = 10, 72% for K = 5). XGBoost and Bagged Trees achieved the 
highest accuracy of 93%, followed by Random Forest and KNN at 91%. Furthermore, Random Forest and Bagged 
Trees exhibited the highest ROC-AUC values at 95%, and XGBoost demonstrated a ROC-AUC of 94%. The results 
demonstrate the effectiveness of ensemble methods in predicting cardiac diseases, along with the potential for 
future advancement through the incorporation of hybrid models and advanced survival analysis techniques.
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continuous attempts to study and treat these disorders 
through modern medical research and data analysis [5].

Machine learning (ML) is an effective method for ana-
lysing complicated information in a variety of industries, 
including healthcare. Machine learning (ML) approaches 
use training algorithms to find patterns and make predic-
tions based on data without explicit programming [6]. A 
wide array of ML models, including Logistic Regression, 
Random Forest, Support Vector Machines, K-Nearest 
Neighbours, Gradient Boosting Machines, Neural Net-
works, XGBoost, Model Averaged Neural Networks, 
Flexible Discriminant Analysis, Conditional Inference 
Trees, Bagged Trees, Naive Bayes, Multivariate Adaptive 
Regression Splines, Boosted Generalised Linear Models, 
Random Trees, and Bayesian Generalised Linear Models, 
have been applied to various datasets to extract [7].

Machine learning techniques are critical for increasing 
the accuracy and efficiency of identifying cardiac disease. 
By analysing massive datasets, ML models can forecast 
the onset of cardiac disease, identify high-risk individu-
als, and recommend the best treatments. Performance 
criteria like as accuracy, recall, precision, and ROC-AUC 
are utilised to assess these models. High accuracy reflects 
the model’s capacity to correctly classify examples; recall 
evaluates the model’s ability to identify all relevant cases; 
precision evaluates the number of genuine positive find-
ings; and ROC-AUC offers an overall measure of perfor-
mance across all classification thresholds.

Through the application of cutting-edge machine 
learning methods, this research aims to provide a thor-
ough examination of cardiac disease prognosis. The lit-
erature on heart disease prediction is reviewed in the 
Review of literature section, with an emphasis on earlier 
approaches and their results. The technique used for this 
study is described in the Methodology section, along 
with the steps involved in gathering data and the features 
that were selected. The dataset, together with its sources, 
features are all described in Data set. The measurements 
and descriptions of the machine learning models used are 
described in the section of Methods. The study and find-
ings, which highlight the various models’ performances, 
are presented in Analysis and Results. In Discussion sec-
tion, the results are compared with earlier studies, high-
lighting the improvements achieved in this investigation, 
makes recommendations for further development and 
finally we concludes in the last section. 

Review of literature
Numerous academic contributions have investi-
gated cardiac disease detection using data mining and 
machine learning approaches, drawing on datasets 
from Cleveland and other nations. Researchers have 
used a variety of methodologies, including ensemble 

learning, neural networks, logistic regression, and sup-
port vector machines, to improve prediction accuracy 
and dependability.

Chandrasekhar et al. (2023) employed machine learn-
ing to increase cardiovascular disease forecasting accu-
racy. They employed six approaches: random forest, 
K-nearest neighbour, logistic regression, Naïve Bayes, 
gradient boosting, and AdaBoost classifier. The Cleve-
land dataset produced the greatest results, with logistic 
regression reaching 90.16% accuracy. AdaBoost scored 
90% accuracy on the IEEE Dataport dataset. A softly 
selected ensemble classifier integrating all six techniques 
improved performance to 93.44% and 95%, outper-
forming logistic regression and AdaBoost classifiers [8]. 
Perumal et al. (2020) They focus evaluated three classi-
fiers: LR, SVM, and KNN, focusing on their performance 
metrics. LR and SVM outperformed the KNN classifier 
in terms of accuracy, sensitivity, specificity, and MCC. 
The LR classifier had higher sensitivity, specificity, accu-
racy, MCC, and error rate, while the SVM had lower per-
formance [9].

Gao et al. (2021) created a system for predicting heart 
illness that employs ensemble approaches such as boost-
ing and bagging, as well as PCA and Linear Discriminant 
Analysis are two examples of feature extraction meth-
ods. They utilised the Cleveland heart disease dataset to 
evaluate the performance of five classifiers. The bagging 
ensemble learning technique, when paired with Decision 
Trees and PCA feature extraction, produced the greatest 
results, with an amazing accuracy of 98.6%. This demon-
strates the efficacy of integrating ensemble approaches 
with feature extraction algorithms for heart disease 
prediction [10]. kahramanli et al. (2008) The suggested 
medical categorization system was tested using the Pima 
Indian diabetes and Cleveland heart disease datasets. The 
performance measures employed were accuracy, sensitiv-
ity, and specificity. The technique obtained 84.24% and 
86.8% accuracy for the heart disease datasets, respec-
tively, which were among the best when compared to 
prior research and UCI websites [11].

Hassan D et al. (2023) suggest a novel technique for 
heart disease prediction based on a pre-trained DNN, 
PCA, and logistic regression. The Cleveland dataset had 
been used to assess the effectiveness of the suggested 
strategy. Experimental findings demonstrated that the 
suggested technique worked well on both training and 
testing data, with 91.79% and 93.33% accuracy rates, 
respectively [12]. Samuel et al. (2016) novel decision 
support system, which combines ANN and Fuzzy AHP 
approaches, was evaluated on 297 heart failure patients 
using an online clinical dataset. The system attained 
an average prediction accuracy of 91.10%, which is 
4.40% greater than the standard ANN technique. It also 
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outperformed seven earlier approaches, which ranged in 
accuracy from 57.85 to 89.01% [13].

Rahman et al. (2018) investigated the Cleveland heart 
disease dataset and used a variety of approaches to pre-
dict heart disease. They used Naive Bayes with a thresh-
old of 0.5, resulting in an accuracy of 88.35%, and with a 
threshold of 0.4, they increased their accuracy to 89.32%. 
Logistic regression was also used, resulting in an accu-
racy of 84.47%. Furthermore, a Neural Network tech-
nique achieved a noteworthy accuracy of 90.2%. The 
suggested ensemble approach, RIHDPS, was the study’s 
most important contribution, with a maximum accuracy 
of 91.26%. This demonstrates how ensemble approaches 
improve forecast accuracy for heart disease [14].

For instance, B Shi et al. (2022) suggested a JASMA-
SVM framework that uses clinical vitamin D and thy-
roid data to accurately predict recurrent spontaneous 
abortion. X Fei et al. (2020) added sparse learning to 
MEKLM to improve the use of neuroimaging to diagnose 
Alzheimer’s and Parkinson’s diseases. In the field of com-
puter vision, L. Zang et al. (2021) created a deep active 
learning framework for scene classification that is based 
on biological inspiration. It uses object-based segmenta-
tion and multimodal feature fusion to get good results on 
remote sensing datasets. Additionally, Chen, M. R., Zeng, 
G. Q., & Lu, K. D. (2019) presented the MaOPEO-HM 
algorithm, a novel many-objective optimization approach 
with adaptive hybrid mutation, which outperformed 

several state-of-the-art evolutionary algorithms on 
benchmark problems [31].

Table 1 summarizes the work of many authors on heart 
disease data, including research that used the same data-
set, as well as their findings. However, in our study, we 
focused on a subset of features are sex, chest pain type, 
fasting blood sugar, resting ECG, exercise angina, ST 
slope, and target. Unlike prior research, which failed to 
find ROC-AUC, our study contains this critical statistic. 
By adding ROC-AUC, we can provide a more thorough 
evaluation of the model’s performance, filling a gap in the 
literature and establishing a more rigorous framework 
for heart disease prediction. This inclusion of ROC-AUC 
guarantees that the models’ diagnostic capacity is prop-
erly evaluated, increasing the dependability of the results.

Methodology
This study used data from the UCI Repository, which 
included five separate heart disease datasets: Cleveland, 
Switzerland, Hungarian, Long Beach VA, and Statlog. 
The merged dataset comprised of 1190 records and 12 
characteristics. For the purpose of this study, only seven 
relevant characteristics were chosen for investigation. 
The dataset was divided into training and testing sets 
with an 8:2 ratio. Following the data splitting, 15 machine 
learning models were applied to the dataset. The per-
formance of these models was measured using a vari-
ety of measures, including accuracy, precision, F1 score, 
recall, confusion matrix, and ROC-AUC. This extensive 

Table 1 An overview of cutting-edge strategies for predicting cardiovascular illnesses. Individual classifiers
R. No Author Year Data Set Methods Results

(Accuracy)
[7] Hassan et al. 2024 Cardiovascular diseases dataset XGboost, Random Forest 85.23, 86.36
[15] Almazroi et al. 2023 Cleveland, Hungarien, Switzerland, Long Beanch 

HDD
Deep Learning 83

[12] Hassan D et al., 2023 Cleveland HDD DNN + PCA + LR 91.79–93.33
[9] Perumal et al.; 2020 Coronary heart diseases from

Cleveland
LR, SVM, KNN 85,87,69

[13] Samuel et al.; 2016 Heart Failure Rate ANN, Fuzzy AHP 91.10, 89.01
[10] Gao et al.; 2021 Heart Diseases PCA + DT 98.6
[14] Rahman et al.; 2018 Cleveland heart diseases data set Navie Bayes (0.4 and 0.5), LR, Neural 

Network, RIHDPS
89.32, 88.35, 
84.47, 90.21, 
91.26

[11] Kahramanli et al.; 2008 Pima Indian Diabetes and Clever data set ANN, Fuzzy Neural Network 84.24, 86.8
[8] Chandrasekhar, N., & Ped-

dakrishna, S.
2023 Clever HDD sets and IEEE Dataport data set LR, AdaBoost 90.16,90

[16] Singh, A., & Kumar, R. 2020 UCI repository dataset SVM, DT, Linear Regression 83, 79, 78
[17] Maji, S., & Arora, S. 2019 UCI respository DT, ANN 78,77
[18] Senthilkumar et al. 2019 UCI respository heart diseases dataset HRLM 88.7
[19] Amin et al. 2019 Heart diseases data set VOTE( NB + LR) 87.4
[20] Chun-an cheng & Hung-

wen chiu
2017 UCI laboratory heart diseases data Hybrid model for NN, DT, SVM, Naïve 

bayes
86.8

[21] Reddy, G. T., & Khare, N. 2017 Cleveland, Hungarian and Switzerland datasets Radial Basis Network Link Network 78
[22] Khateeb, N., & Usman, M. 2017 HDD KNN 80
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examination enabled a detailed comparison of the mod-
els’ performance in predicting cardiac disease as overall 
process is shown in the Fig. 1.

Data set
The heart disease dataset utilised in this work was 
acquired from the UC Irvine Machine Learning Reposi-
tory and Kaggle, and it included 12 features and 1,190 
entries. The collection is made up of data from several 
sites, including Cleveland (303 records), Hungary (294 
recordings), Switzerland (123 records), Long Beach, 
Va (200 records), and Stalog (270 records). Combining 

all of these datasets yielded a comprehensive dataset of 
1,190 records. For our research, we chose the seven most 
important variables from the original 12, with an empha-
sis on those that make a major contribution to heart dis-
ease prediction. This meticulous selection is intended to 
improve the performance and accuracy of the various 
machine learning models used in this study.

We selected seven key variables for analysis from 
Table 2, which contained dataset details: sex, chest pain 
kind, fasting blood sugar, resting ECG, exercise angina, 
ST slope, and Target. These characteristics were chosen 
based on their relation to heart disease prognosis. Using 

Fig. 1 Proposal methodology for analysis

 



Page 5 of 12Teja and Rayalu BMC Cardiovascular Disorders          (2025) 25:212 

these chosen characteristics, multiple machine learning 
algorithms were applied to the dataset to predict heart 
disease outcomes. This concentrated strategy is intended 
to improve the predicted accuracy and reliability of the 
models by focusing on the most useful factors.

Methods
Metrics
Confusion matrix:

A confusion matrix is a tabular format that evaluates 
the effectiveness of a classification model. It juxtaposes 
the anticipated classifications with the actual classifica-
tions, yielding insights about the model’s performance 
efficacy. The matrix comprises four fundamental ele-
ments: True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN).

 
CM =

[
TP FN
FP TN

]

Accuracy:
Accuracy is the fraction of accurately predicted cases 

(including true positives and true negatives) among all 
instances.

 
Accuracy = TP + TN

TP + TN + FP + FN
 (1)

Precision:
Precision is also known as positivity. The predictive 

value is the proportion of real positive forecasts among 
all positive ones.

 
Precision = TP

TP + FP
 (2)

Recall:

Recall, also known as responsiveness or true positive 
rate, is a metric that indicates the proportion of real posi-
tive forecasts across all positives.

 
Recall = TP

TP + FN
 (3)

F1Score:
The score of F1 is the harmonic average of precision 

and recall, resulting in a balance of the two measures 
[23].

 
F1 score = 2 X

Precision X Recall

Precision + Recall
 (4)

ROC-AUC (Receiver Operating Characteristic– Area 
Under the curve)

The Recall (TPR) and False Positive Rate (FPR) are con-
trasted on the ROC curve. The classifier’s performance 
is summarised at every level of classification by the AUC 
(Area Under the Curve) [24].

 
AUC =

1∫

0

TPRd (FPR) (5)

Models
Logistic regression:

A statistical model called logistic regression uses binary 
classification to forecast if an input is part of a particular 
class or not. The logistic function is employed to translate 
the output into probability values [20].

 

P (Y = 1|X) =
1

1+e−(β 0+β 1X1+... ... ... ... .+β nXn)

 (6)

Random forest:

Table 2 Data set description
S.No Variable Name Description and range Feature Type
1. Age Age 30 to 90 Integer
2. Sex 0-female, 1-male Binary
3. Chest-pain Chest pain type 1 to 4 Nominal
4. Rest-bp Resting Blood Pressure 90 to 180 Integer
5. Serum-chol Serum Cholestrol mg/dl [126,564] Integer
6. Fastingbloodsugar (FBS) FBS above 120 mg/dl [1 = true, 0 = false] Binary
7. Electrocardiographic (ECG) Resting electrocardiographic results Nominal
8. Max-heart-rate Maximum heart rate achieved 90 to 180 Integer
9. Angina exercise induced angina [0 = no, 1 = yes] Binary
10. Old peak oldpeak = ST depression induced by exercise relative to rest Integer
11. Slope the slope of the peak exercise ST segment Normal
12. Target 0-No, 1-Yes Binary
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As part of a group learning technique called random 
forest, many decision trees are built during training and 
the mean estimate for regression of each tree or the mode 
of the categories for classification are returned.

 
f̂ (x) = 1

B

∑
B
b=1fb (x) (7)

Where f̂ (x) is the aggregated prediction from B trees 
[22].

SVR (Support Vector Regression).
SVR is a support vector machine that solves regression 

issues. It seeks a function that deviates by no more than e 
from the actual goal values.

 f (x) =
∑

n
i=1 (α i − α i

∗) K (xi, x) + b  (8)

Where K (xi, x) is the Kernel function.
KNN (K-nearest neighbors)
KNN is a slow, non-parametric learning method that 

may be applied to regression and classification. The aver-
age of the values of the KNN is the result of regression.

 
f̂ (x) = 1

k

∑
i∈ Nk(x)yi (9)

Where Nk (x) are the k-nearest neighbors of x.
GBM (gradient boosting machine)
Gradient Boosting Machine is an ensemble learning 

approach that constructs a model stage by stage using 
weak learners such as decision trees and optimises a loss 
function using gradient descent.

 Fm (x) = Fm−1 (x) + vhm (x) (10)

Where hm (x) is the base learner, v is the learning rate.
Neural network:
A neural network is a set of algorithms that attempt to 

recognise correlations in data using an approach compa-
rable to the human brain. It consists of layers of nodes, or 
neurons, that are linked in a network [23, 26].

 
a(l) = g

(
W (l)a(l−1)

)
+ b(l) (11)

Where g is the activation function, W (l) and b(l) are the 
weights and biases of layer l.

XGBoost
XGBoost (Extreme Gradient Boosting) is an optimised 

gradient boosting system that use decision trees and is 
intended for speed and performance.

 Fm (x) = Fm−1 (x) + γ mhm (x) (12)

Where γ m is the weight of the mth tree, and hm (x) is 
the m-th tree’s prediction.

Model averaged neural network (MANN)
To increase generalisation and prevent overfitting, 

model-averaged neural networks are trained using sev-
eral neural networks and then averaged to produce 
predictions. This ensemble technique combines the 
strengths of individual models [21].

 
ŷ = 1

M

∑
M
m=1ŷ(m) (13)

Flexible discriminant analysis (FDA)
Flexible discriminant analysis extends linear dis-

criminant analysis by including non-linear correlations 
through the use of basis expansions and non-parametric 
regression strategies.

 gk (x) =
∑

p
j=1∅ j (x) β jk (14)

Where ∅ j (x) are basis functions and β jk are coeffi-
cients for class k.

Conditional inference tree (CIT)
Conditional inference trees are a sort of decision tree 

that selects splits using hypothesis testing, therefore 
avoiding the overfitting and selection bias found in regu-
lar decision trees.

The splitting criterion is based on the test statistic:

 
Test statistic = maxj

(
|Tj |
σ j

)
 (15)

Where Tj  is the test statistic for predictor j and σ j  is its 
standard error.

Bagged tree (BT)
Bagged Trees are an ensemble approach that creates 

numerous decision trees using distinct bootstrap samples 
of training data and then aggregates their results. This 
helps to minimise variation and increase model stability.

 
f̂b (x) = 1

T

∑
T
t=1ft (x)  (16)

Where T is the number of bootstrap samples and ft (x) 
is the prediction from the t-th tree.

Navie bayes (NB)
Navie bayes is a probabilistic classifier based on the 

Bayes theorem, which assumes predictor independence. 
It determines the posterior probability of each class 
based on the supplied characteristics [25].

 
P (Ck|x) = P (Ck)

∏
n
i=1P (xi| Ck)

P (x)  (17)
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Where Ckis the class, xi are the input features, and P(x) 
is the marginal probability of x.

Multivariate adaptive regression splines (MARS)
MARS is a regression approach that models relation-

ships by fitting piecewise linear regressions known as 
splines, which automatically pick and combine predictor 
variables to increase prediction accuracy.

 f (x) = β 0 +
∑

M
m=1β mhm (x) (18)

Where hm (x) are basis functions and β m  are 
coefficients.

Boosted generalized linear model (BGGLM)
Boosted The generalised linear model combines the 

flexibility of boosting methods with the interpretability of 
generalised linear models, iteratively refining the model 
through residual fitting [27].

 Fm (x) = Fm−1 (x) + v.GLMm (x) (19)

Where v is the learning rate, and GLMm (x) is the m-th 
GLM fit to the residuals.

Bayesian generalized linear model (BGLM)
The Bayesian Generalised Linear Model (BGLM) 

builds on generalised linear models by including Bayes-
ian inference, which allows for the integration of previous 
information and probabilistic interpretations of model 
parameters.

 p (β | y) ∝ p (y|β ) p(β ) (20)

Where p (y|β ) is the likelihood and p (β ) is the prior 
distribution.

Analysis and results
Feature selection
The heart disease dataset’s correlation matrix reveals sig-
nificant relationships between various variables in Fig. 2. 
Age is moderately correlated with resting blood pressure 
and exercise-induced angina, suggesting older individuals 
may have higher blood pressure and angina during exer-
cise. Sex is positively correlated with the target variable, 
indicating a higher likelihood of heart disease in males. 
Chest pain type is strongly correlated with exercise-
induced angina and the target variable, underscoring its 
importance in heart disease diagnosis. Max heart rate has 
a significant negative correlation with age and the target 
variable, suggesting higher heart rates are associated with 
younger age and lower heart disease prevalence. Exer-
cise-induced angina and ST slope have strong positive 
correlations with the target variable, and old peak is posi-
tively correlated with ST slope and the target variable.

Many research studies have shown that different kinds 
of chest pain, like angina, atypical angina, and non-angi-
nal pain, are strong signs that someone might get heart 
disease. Researchers have derived their findings from 
these studies [32, 33]. The Framingham Heart Study 
came to the conclusion that elevated levels of blood sugar 
in the fasting state are associated with an increased risk 
of cardiovascular diseases [34, 35]. This was one of the 
findings of the study. An important diagnostic tool for 
figuring out if someone has had a myocardial infarc-
tion or ischemia is finding any changes in the data from 
an ECG [36]. In the presence of ischemic heart disease, 
there is a strong association between the occurrence of 
exercise-induced angina and the risk of developing the 
condition. When attempting to diagnose coronary artery 
disease, the slope of the ST segment at maximal activ-
ity is a highly essential component to consider [37]. We 
chose seven features or variables to use machine learn-
ing analysis on based on the results of correlation and 
another research paper.

Evaluation metrics for machine learning models
In this work, we want to predict heart disease by ana-
lyzing a dataset that originally included 12 Features or 
variables. To enhance the functionality of the model, we 
carefully chose the seven most relevant variables. Apply-
ing these variables to different machine learning models 
produces substantial outcomes. Logistic regression has 
an accuracy of 0.83, a precision of 0.84, a recall of 0.78, 
and F1 score of 0.81. Random Forest performs admirably, 
with an accuracy of 0.91, a precision of 0.92, a recall of 
0.90, and an F1 score of 0.91. SVM regression produces 
comparable results as logistic regression, whereas KNN 
matches Random Forest’s performance with an accu-
racy of 0.91. GBM has an accuracy of 0.87, with balanced 
precision and recall scores. Neural networks and model-
averaged neural networks both score an accuracy of 0.85.

XGBoost has the best accuracy of 0.93, precision of 
0.92, recall of 0.92, and F1 score of 0.92. Flexible Dis-
criminant Analysis (FDA) and MARS both have an accu-
racy of 0.84, with minor differences in precision and 
recall. The Conditional Inference Tree (CIT) model has 
a lower accuracy of 0.81, while other metrics are margin-
ally lower than those of the FDA and MARS. The Bagged 
Tree model is comparable to XGBoost’s strong perfor-
mance, with an accuracy of 0.93 and continuously good 
precision and recall. Naive Bayes obtains an acceptable 
accuracy of 0.85.

Bayesian Generalised Linear Models (BGLM) and 
Boosted Generalised Linear Models (BGGLM) perform 
similarly, with accuracies of 0.83 and 0.835, respec-
tively as results shown in Table 3. This investigation 
compares the efficacy of several machine learning mod-
els in predicting cardiac disease, demonstrating the 
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value of choosing essential factors to improve model 
performance.

ROC-AUC
The comparison of multiple machine learning models 
on the heart disease dataset using ROC-AUC (Receiver 
Operating Characteristic-Area Under the Curve) met-
rics indicates considerable disparities in predicting abil-
ity mention in Table  4; Fig.  3 (where x-axis represents 
Specificity and y-axis represents Sensitivity). Notably, 
ensemble approaches such as Random Forest and Bagged 
Tree had the highest ROC-AUC values of 0.95, showing 
a higher capacity to identify between individuals with 
and without heart disease. XGBoost also scored admi-
rably, with a ROC-AUC of 0.94, indicating its capabil-
ity to handle complicated data structures and capture 

intricate patterns within the dataset. The Gradient Boost-
ing Machine (GBM) had a ROC-AUC of 0.92, whereas 
models such as SVM regression, KNN, Neural Network, 
MANN, FDA, CIT, and Naïve Bayes consistently had 
ROC-AUC values of 0.91, showing their dependability in 
prediction tasks.

Traditional models, such as Logistic Regression, MARS, 
BGLM, and BGGLM, performed marginally worse, with 
ROC-AUC values of 0.90. While these models still have 
decent accuracy, the results show that ensemble meth-
ods and advanced boosting techniques outperform them 
in terms of predictive power. These findings highlight 
the significance of model selection and optimisation in 
heart disease prediction, implying that combining pow-
erful ensemble algorithms might greatly improve diag-
nostic accuracy. Furthermore, the higher performance 

Fig. 2 The findings of correlation across all characteristics are shown as a heatmap
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of models such as Random Forest and Bagged Tree, 
together with the promising results of XGBoost, suggests 
that utilising ensemble learning approaches may lead to 
more reliable and accurate cardiac disease prediction sys-
tems, ultimately improving patient outcomes.

Confusion matrix
Overall, Random Forest, XGBoost, and Bagged Tree 
models outperform in predicting heart disease, with the 
lowest misclassification rates and best accuracy in con-
fusion matrix. KNN, GBM, and Neural Networks all 
perform well, making them reliable prediction models. 
Models such as Logistic Regression, SVM, FDA, MANN, 
and Naive Bayes perform well but with greater error 
rates, whereas CIT, BGLM, and BGGLM have lesser 
accuracy and may require more optimisation for better 
performance from Table 5.

Cross-Validation
This study uses a combined dataset from several sources 
to show how well different machine learning models pre-
dict cardiac disease. We significantly improved predicted 
performance by applying fifteen different models and 
concentrating on seven key features. The maximum accu-
racy was 93% for XGBoost and Bagged Trees and 91% 
for Random Forest and KNN. Cross-validation results 
showed that XGBoost performance slightly decreased 
while Random Forest performance stayed high (94% for 
K = 10 and 92% for K = 5). This added to the idea that the 
model was stable. ROC-AUC values showed that Random 
Forest and Bagged Trees got 95%, XGBoost got 94%, and 
GBM got 92%. This showed that the models were more 
reliable. Notably, under cross-validation, KNN’s accuracy 
dramatically decreased, suggesting possible overfitting. 
Conventional models like Naïve Bayes, SVM Regres-
sion, and Logistic Regression performed moderately 
yet consistently. The results demonstrate in the Table 6, 
to evaluate models for more than just accuracy because 
cross-validation offers a reliable assessment of their abil-
ity to generalize. Taking everything into account, our 
results surpass those of previous studies, showcasing the 
potential of advanced machine learning techniques for 
precise clinical cardiac disease forecasting.

Discussion
Table  1 summarizes the work of many writers on heart 
disease datasets, describing different approaches and 
their accuracies. Almazraoj et al. [15] achieved 83% accu-
racy with deep learning, whereas Singh et al. achieved 
83% accuracy with SVM, 79% with decision trees, and 
78% with linear regression. Maji et al. [17] discovered that 
decision trees and artificial neural networks (ANN) had 
accuracies of 78% and 77%, respectively, whereas Reddy 
et al. [21] reached 78% using RBNN. In our investigation, 
we employed a subset of characteristics and sophisticated 
machine learning algorithms to get much improved accu-
racy. XGBoost and Bagged Trees obtained 93% accuracy, 
while Random Forest and KNN got 91%. In addition, we 
computed ROC-AUC values, which were not addressed 
in earlier investigations. Our findings suggest that Ran-
dom Forest and Bagged Trees have ROC-AUCs of 95, 
XGBoost has 94, GBM has 92, and the remaining mod-
els vary between 90 and 91, as shown in Table  4. This 
extensive examination indicates the higher performance 
and diagnostic capacity of our chosen models when com-
pared to earlier efforts.

Limitations

  • Lack of Comprehensive Feature Evaluation: Many 
earlier studies used all accessible characteristics 
without rigorously examining their impact on model 

Table 3 Individual classifier results were evaluated
S.No Models Accuracy Precision Recall F1Score
1 Logistic Regression 0.83 0.84 0.78 0.81
2 Random Forest 0.91 0.92 0.90 0.91
3 SVM Regression 0.83 0.84 0.79 0.82
4 KNN 0.91 0.91 0.91 0.91
5 GBM 0.87 0.87 0.86 0.86
6 Neural Network 0.84 0.85 0.80 0.82
7 XGBoost 0.93 0.92 0.92 0.92
8 MANN 0.84 0.86 0.79 0.82
9 FDA 0.84 0.85 0.82 0.83
10 CIT 0.81 0.78 0.82 0.80
11 Bagged tree 0.93 0.93 0.92 0.93
12 Navi Bayes 0.85 0.87 0.80 0.83
13 MARS 0.84 0.85 0.82 0.83
14 BGLM 0.83 0.84 0.80 0.82
15 BGGLM 0.83 0.84 0.79 0.82

Table 4 ROC-AUC values for machine learning models
S.No Models AUC
1. Logistic Regression 0.90
2. Random Forest 0.95
3. SVM regression 0.91
4. KNN 0.91
5. GBM 0.92
6. Neural Network 0.91
7. XGBoost 0.94
8. MANN 0.91
9. FDA 0.91
10. CIT 0.91
11. Bagged Tree 0.95
12. Navie Bayes 0.91
13. MARS 0.90
14. BGLM 0.90
15. BGGLM 0.90
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performance. Our study identifies seven significant 
variables based on domain expertise and assesses their 
influence with machine learning models.

  • Limited Comparison of Machine Learning Models: 
Before we looked at ensemble methods, most study 
only looked at a few models, like logistic regression, 
decision trees, or neural networks. To find the best 
method, our study compares 15 models, such as 
advanced ensemble methods like XGBoost and 
Bagged trees.

  • Absence of ROC-AUC Analysis: Some studies said 
they were accurate, but they didn’t give ROC-AUC 
scores, which are a more accurate way to measure 
how well a classification system works. This study 
fills in the blanks by looking at the ROC-AUC values 
of all the models, which gives a strong assessment of 
how well they can predict.

  • Lack of Model Validation Techniques: A number 
of earlier studies may have overfitted because they 
failed to use appropriate validation procedures. 

K-fold cross-validation is used in our study to 
guarantee accurate and broadly applicable findings.

  • Limited Model Interpretability and Deployment 
consideration: Some studies didn’t look at how the 
results would work in the real world, like how to 
make the computer work faster or how to make it 
easier to use models. Our work talks about the trade-
offs between model complexity and performance, 
which can be used in real life.

Future directions

  • Exploring Survival Analysis Models: In the future, 
researchers could look into Gaussian Process 
Regression and other methods for survival analysis to 
figure out how heart diseases will get worse over time.

  • Hybrid Model Approaches: It’s possible that 
combining several learning models (like XGBoost, 
Random Forest, and Bagged Trees) through 

Fig. 3 ROC-AUC plot for different Machine learning models
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ensemble or meta-analysis methods could make 
predictions more accurate overall.

  • Real-time clinical Application: Incorporating the 
created models into a clinical decision support 
system could assist clinicians in the early diagnosis of 
cardiac disease and enhance patient outcomes.

  • Validation on larger, Real-world Datasets: In the 
future, bigger, real-world datasets from hospitals 
or electronic health records (EHRs) should be used 

to test the model’s generalizability and practical 
applicability.

Conclusion
This work offers a thorough assessment of machine 
learning models for predicting cardiac disease, utilizing 
a consolidated dataset from many sources. We employed 
fifteen distinct models, including XGBoost, Random For-
est, Bagged Trees, and conventional classifiers such as 
Logistic Regression and Naïve Bayes, by picking seven 
essential features. XGBoost and Bagged Trees attained 
the highest accuracy of 93%, closely followed by Random 
Forest and KNN at 91%. To guarantee model robust-
ness, we utilized k-fold cross-validation (K = 10, K = 5), 
wherein Random Forest showed enhanced stability (94% 
for K = 10, 92% for K = 5), while XGBoost displayed a 
marginal decrease. The ROC-AUC scores showed that 
the models were even more reliable. Random Forest and 
Bagged Trees got 95%, XGBoost got 94%, and GBM got 
92%. Furthermore, tests such as precision, recall, and 
F1-score proved that these models worked, with Bagged 
Trees and Random Forest showing a strong balance 
between sensitivity and specificity. The confusion matrix 
elucidated misclassification tendencies, facilitating model 
enhancement. KNN demonstrated a propensity for over-
fitting, as its accuracy markedly declined during cross-
validation. These results show that ensemble models are 
better at predicting heart disease and stress how impor-
tant cross-validation is for generalizability. Our method 
is better than what has been done before, which shows 
that modern machine learning techniques can help doc-
tors make accurate and reliable decisions.
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Table 5 Confusion matrix for different models
S.No Models Confusion Matrix
1 Logistic Regression

[
88 16
24 109

]
2 Random forest

[
101 8
11 117

]
3 SVM Regression

[
89 16
23 109

]
4 KNN

[
103 10

9 115

]
5 GBM

[
97 14
15 111

]
6 Neural Network

[
90 15
12 110

]
7 XGBoost

[
104 8

8 117

]
8 MANN

[
89 14
23 111

]
9 FDA

[
92 16
20 109

]
10 CIT

[
92 25
20 100

]
11 Bagged Tree

[
104 7

8 118

]
12 Navi Bayes

[
90 11
22 112

]
13 MARS

[
92 16
20 109

]
14 BGLM

[
90 17
22 108

]
15 BGGLM

[
89 16
23 109

]

Table 6 K-fold Cross-Validation accuracy for machine learning 
models
S.No Models Accuracy K = 10

Accuracy
K = 5
Accuracy

1 Logistic Regression 0.83 0.84 0.84
2 Random Forest 0.91 0.94 0.92
3 SVM Regression 0.83 0.86 0.85
4 KNN 0.91 0.71 0.72
5 GBM 0.87 0.89 0.86
6 Neural Network 0.84 0.85 0.84
7 XGBoost 0.93 0.90 0.89
8 MANN 0.84 0.85 0.84
9 FDA 0.84 0.85 0.84
10 CIT 0.81 0.83 0.82
11 Bagged tree 0.93 0.91 0.92
12 Navi Bayes 0.85 0.84 0.83
13 MARS 0.84 0.85 0.84
14 BGLM 0.83 0.84 0.83
15 BGGLM 0.83 0.84 0.84
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