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Abstract
Background  Accurate risk prediction in heart failure remains challenging due to its complex pathophysiology. We 
aimed to develop and validate a comprehensive prognostic model integrating demographic, electrocardiographic, 
echocardiographic, and biochemical parameters.

Methods  We conducted a retrospective cohort study of 445 heart failure patients. The cohort was randomly divided 
into training (n = 312) and validation (n = 133) sets. Feature selection was performed using LASSO regression followed 
by backward stepwise Cox regression. A nomogram was constructed based on independent predictors. Model 
performance was assessed through discrimination, calibration, and decision curve analyses. Random survival forest 
analysis was conducted to validate variable importance.

Results  During a median follow-up of 4.14 years, 142 deaths (31.91%) occurred. Our model development followed 
a systematic approach: initial feature selection using LASSO regression identified 15 potential predictors, which 
were further refined to nine independent predictors through backward stepwise Cox regression. The final predictors 
included age, NYHA class, left ventricular systolic dysfunction, atrial septal defect, aortic valve annulus calcification, 
tricuspid regurgitation severity, QRS duration, T wave offset, and NT-proBNP. The integrated model demonstrated 
good discrimination for 2-, 3-, and 5-year mortality prediction in both training (AUCs: 0.726, 0.755, 0.809) and 
validation cohorts (AUCs: 0.686, 0.678, 0.706). Calibration plots and decision curve analyses confirmed the model’s 
reliability and clinical utility across different time horizons. A nomogram was constructed for individualized risk 
prediction. Kaplan-Meier analyses of individual predictors revealed significant stratification of survival outcomes, 
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Introduction
Heart failure (HF) remains a major global public health 
challenge, affecting approximately 64.3  million people 
worldwide and accounting for substantial morbidity, 
mortality, and healthcare costs [1–3]. The prevalence 
of HF continues to rise with an aging population and 
improved survival from other cardiovascular diseases, 
placing an increasing burden on healthcare systems 
globally [4]. Despite advances in therapeutic strate-
gies, including novel pharmacological interventions and 
device therapies, the prognosis of HF patients remains 
poor, with 5-year mortality rates exceeding 50% in some 
populations [5, 6]. This high mortality rate underscores 
the critical need for accurate risk prediction tools to 
guide clinical decision-making and resource allocation.

Accurate risk stratification is crucial for optimizing 
patient management and resource allocation in HF care. 
Traditional prognostic assessments have relied heavily on 
individual clinical parameters, such as New York Heart 
Association (NYHA) functional classification, left ven-
tricular ejection fraction, and natriuretic peptide levels 
[7, 8]. These parameters, while valuable, often provide 
only partial insights into the complex pathophysiology of 
HF. The multifaceted nature of HF progression, involv-
ing neurohormonal, inflammatory, and structural cardiac 
changes, suggests that a more comprehensive approach 
incorporating multiple parameters might better capture 
the full spectrum of disease severity and progression [9]. 
This comprehensive approach could potentially identify 
high-risk patients who might benefit from more inten-
sive monitoring or aggressive therapeutic interventions. 
Electrocardiographic (ECG) parameters have emerged 
as valuable prognostic indicators in HF, offering insights 
into the electrical manifestations of cardiac dysfunction. 
QRS duration, T-wave characteristics, and other ECG 
markers reflect underlying electrical remodeling and 
have been consistently associated with adverse outcomes 
in various HF populations [10, 11]. These parameters 
are valuable as they are typically available from rou-
tine clinical assessments; however, some variables were 
not fully available in our dataset due to missing values. 
Similarly, echocardiographic parameters provide crucial 

information about cardiac structure and function, with 
various measurements showing independent prognos-
tic value [12, 13]. Modern echocardiographic techniques 
can assess multiple aspects of cardiac function, including 
systolic and diastolic function, valve status, and struc-
tural remodeling. The integration of these parameters 
with established clinical markers and biomarkers might 
enhance prognostic accuracy and provide a more com-
plete picture of cardiac dysfunction [14]. Recent studies 
have highlighted the potential of multimodal risk pre-
diction models in HF. Natriuretic peptides, particularly 
NT-proBNP, have demonstrated strong prognostic value 
across different HF phenotypes and stages [15, 16], while 
demographic factors and clinical classifications con-
tinue to provide fundamental prognostic information 
that complements more sophisticated markers [17]. The 
combination of multiple prognostic markers has shown 
promise in improving risk prediction accuracy. However, 
most existing models focus on limited aspects of cardiac 
assessment or specific patient subgroups, potentially 
missing important prognostic information that could 
be derived from a more comprehensive evaluation [18, 
19]. This limitation highlights the need for integrated 
approaches that can capture the full spectrum of HF 
pathophysiology.

Machine learning approaches have shown promise in 
improving risk prediction by capturing complex relation-
ships between multiple variables [20, 21]. These advanced 
analytical methods can integrate diverse data types, 
including demographic characteristics, cardiac imaging 
parameters, biomarkers, and ECG measurements, poten-
tially offering more accurate prognostic assessments 
than traditional statistical approaches [22]. The ability to 
handle large numbers of variables and identify non-linear 
relationships makes these methods particularly suited for 
complex diseases like HF. However, the clinical applica-
tion of such models often requires rigorous validation in 
diverse populations and demonstration of incremental 
value over existing risk stratification methods [23]. The 
challenge lies in developing models that are both com-
prehensive and practical for clinical implementation.

while restricted cubic spline analyses demonstrated non-linear relationships between continuous variables and 
mortality risk. Random survival forest analysis identified the top five predictors (age, NT-proBNP, QRS duration, 
tricuspid regurgitation severity, NYHA), which were compared with our nine-variable model, confirming the superior 
performance of the integrated model across all time points.

Conclusions  Our integrated prognostic model showed robust performance in predicting all-cause mortality in heart 
failure patients. The model’s ability to provide individualized risk estimates through a nomogram may facilitate clinical 
decision-making and patient stratification.

Clinical trial number  Not applicable.
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Therefore, we aimed to develop and validate a com-
prehensive prognostic model for all-cause mortality in 
HF patients by integrating demographic characteristics, 
ECG parameters, echocardiographic measurements, 
NT-proBNP levels, and NYHA classification. This inte-
grated approach aims to capture the multiple facets of HF 
pathophysiology and provide a more accurate assessment 
of patient risk. We hypothesized that this multimodal 
approach would provide superior prognostic accuracy 
compared to models based on individual parameters 
or limited variable sets, potentially offering clinicians 
a more reliable tool for risk stratification and treatment 
planning.

Methods
Study population and design
This retrospective cohort study was approved by the 
Institutional Review Board of the Chinese People’s Lib-
eration Army General Hospital and was conducted in 
accordance with the Declaration of Helsinki. We con-
secutively enrolled patients hospitalized for heart failure 
in the Department of Cardiology between October 2017 
and June 2024, with all-cause mortality as the primary 
endpoint. Survival time was calculated from admission 
to death or last follow-up. Heart failure diagnosis was 
established according to the 2021 European Society of 
Cardiology (ESC) Guidelines [7]. We collected compre-
hensive baseline characteristics including demographics 
(age, gender, height, weight), lifestyle factors (smok-
ing and drinking status), and clinical parameters (blood 
pressure, heart rate, NYHA functional class). All par-
ticipants underwent systematic evaluations including 
electrocardiography, echocardiography, and biomarker 
assessment. The electrocardiographic examination docu-
mented cardiac electrical activity parameters including 
rate measurements (ventricular and atrial rates), interval 
durations (QRS, QT, and corrected QT by both Frederi-
cia and Framingham methods), electrical axes (P-wave 
and T-wave), and specific wave measurements. Echo-
cardiographic assessment comprised detailed structural 
measurements (chamber dimensions, wall thickness), 
functional evaluations (systolic and diastolic function), 
and comprehensive assessment of cardiac abnormalities 
including shunts, septal defects, thrombi, aneurysms, and 
wall motion abnormalities. Particular attention was paid 
to valvular conditions, documenting the presence and 
severity of stenosis and regurgitation across all cardiac 
valves, valvular calcification, and prosthetic valve status. 
NT-proBNP was measured as a biomarker of heart fail-
ure severity.

We selected the average value of QRS duration and 
other ECG parameters because this approach reduces the 
impact of individual abnormal beats or noise on the final 

results, ensuring both the stability and representativeness 
of the data.

To ensure the reliability and consistency of the ECG 
parameter extraction, two independent experts, both 
with extensive experience in ECG analysis, were involved 
in the process. Both experts were blinded to the clinical 
outcomes and patient identities to eliminate potential 
bias. The process was structured as follows: (1) Indepen-
dent Review: Each expert individually reviewed the raw 
ECG data and manually extracted the relevant parame-
ters (e.g., QRS duration, QTc). The experts were trained 
to follow a standardized protocol to ensure uniformity 
in their approach to data extraction. (2) Collaboration 
and Cross-Verification: After the initial extraction, the 
two experts compared their results for each patient. If 
there were discrepancies in the extracted parameters, the 
experts discussed the differences and reviewed the ECGs 
again to reach a consensus. This collaborative review 
process was conducted to ensure that the final data set 
accurately represented the true physiological values. (3) 
Discrepancy Resolution: In the event of unresolved dis-
crepancies, a third senior expert was consulted to pro-
vide a final determination. However, the experts were 
able to resolve most discrepancies through discussion 
and further examination of the ECG traces. This rigor-
ous review process ensured that the extracted parameters 
were both reliable and consistent. (4) Quality Control: To 
further minimize potential bias, a random sample of 10% 
of the ECGs was reviewed by both experts a second time 
after a period of time to assess the reproducibility of their 
results. Any differences found were addressed through 
re-evaluation and consensus.

The inclusion criteria were as follows
(1) age ≥ 18 years; (2) diagnosed with heart failure accord-
ing to the 2021 ESC Guidelines; (3) available complete 
data including: Basic clinical data (demographics, NYHA 
classification); Standard electrocardiogram parameters; 
Complete echocardiography examination results; NT-
proBNP level (4) available follow-up data for survival 
assessment. The exclusion criteria included: (1) Patients 
with atrial fibrillation; (2) incomplete or poor quality 
ECG recordings; (3) inadequate echocardiographic imag-
ing quality; (4) missing critical clinical parameters; (5) 
loss to follow-up or uncertain survival status. All eligible 
patients were randomly divided at a 7:3 ratio into training 
and validation sets. The training set was used to develop 
prognostic models incorporating electrocardiographic 
and echocardiographic parameters, while the validation 
set was used to assess the model performance in predict-
ing all-cause mortality. The inclusion and exclusion cri-
teria, as well as the technical approach of this study, are 
depicted in Fig. 1.
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Data preprocessing
Missing data patterns were systematically evaluated for 
all variables (Supplementary Fig.  2 and Supplementary 
Table 2). Variables with missing rates exceeding 20% were 
excluded from subsequent analyses. These excluded vari-
ables encompassed three main categories:

1.	 Left ventricular parameters: Left Ventricular End 
Diastolic Diameter (23.82%), Left Ventricular 
End Systolic Diameter (23.82%), Left Ventricular 
End Diastolic Volume (23.82%), Left Ventricular 
End Systolic Volume (23.82%), Left Ventricular 
Anteroposterior Diameter (77.3%);

2.	 Other cardiac chamber measurements: Right Atrial 
Maximum Diameter (24.04%), Left Atrial Transverse 
Diameter (23.82%), Left Atrial Superior Inferior 
Diameter (23.82%), Right Ventricle Ratio (29.21%), 

Left Ventricle (29.21%), Right Ventricular Maximum 
Diameter (29.66%);

3.	 Vascular and septal measurements: Right Pulmonary 
Artery Diameter (24.27%), Left Pulmonary 
Artery Diameter (24.27%), Aortic Sinus Superior 
Diameter (24.27%), Aortic Sinus Diameter (24.27%), 
Interventricular Septal Thickness (78.65%);

4.	 Electrocardiographic parameters: P-R Interval 
(26.74%), P Offset (26.74%), P Onset (26.74%), P Axis 
(26.74%).

For the remaining variables with missing rates below 
20%, missing values were imputed using the Multiple 
Imputation by Chained Equations (MICE) algorithm 
with five iterations to ensure robust estimation of miss-
ing data. After completing the imputation, we checked 

Fig. 1  Flow diagram of the selection of eligible HF patients. Abbreviation: HF: Heart failure; LASSO: Least absolute shrinkage and selection operator; ROC: 
Receiver operating characteristic curve; DCA: Decision curve analysis
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the imputation results using convergence plots and den-
sity curve plots. We plotted the changes in the mean 
and standard deviation of each variable over the itera-
tions. When multiple lines converge and overlap, it can 
be considered as convergence (Supplementary Fig.  2). 
In the density curve plot, red represents the distribution 
of imputed data, and blue represents the distribution of 
observed data. The higher the overlap, the better (Supple-
mentary Fig. 3). No statistical difference was observed in 
the baseline before and after imputation (Supplementary 
Table 3).

Collect clinical parameters
Electrocardiographic parameters were assessed following 
the 2021 AHA/ACC/HRS Guideline. Basic ECG param-
eters included ventricular and atrial rates. Interval mea-
surements comprised QRS duration (measured from 
QRS onset to offset), QT interval (from QRS onset to T 
wave end), and corrected QT intervals calculated using 
both Fredericia’s (QTc = QT/RR^1/3) and Framingham 
formulas. The electrical axes assessment included P wave 
and T wave axes, while wave characteristics encom-
passed QRS count, Q wave onset/offset, and T wave off-
set. Echocardiographic measurements were performed 
according to the 2015 American Society of Echocardiog-
raphy and European Association of Cardiovascular Imag-
ing recommendations. Chamber dimensions included 
left atrial anteroposterior diameter, left ventricular pos-
terior wall thickness, left and right ventricular cavities, 
right atrial transverse diameter, and right ventricular 
transverse diameter. Vascular measurements comprised 
aortic diameter and right pulmonary artery diameter. 
Ventricular function was assessed through left ventricu-
lar shortening fraction, ejection fraction (EF), and evalu-
ation of systolic and diastolic dysfunction. Structural 
abnormalities were documented, including the presence 
of shunts (at great vessel and atrial levels), atrial septal 
defects, apical thrombi, ventricular aneurysms, segmen-
tal wall motion abnormalities, and pericardial effusion. 
Valvular assessment included documentation of annular 
calcification (aortic and mitral), presence of prosthetic 
valves (aortic and mitral), and severity grading of valvu-
lar stenosis (aortic and mitral) and regurgitation (aortic, 
mitral, tricuspid, and pulmonary). NT-proBNP levels 
were measured as a biomarker of heart failure severity. 
Clinical characteristics included age, gender, height, 
weight, lifestyle factors (smoking and drinking status), 
blood pressure (systolic and diastolic), heart rate, and 
NYHA functional classification.

Statistical analysis and model development
All statistical analyses and model development were per-
formed using R software (version 4.3.1; R Foundation 
for Statistical Computing, Vienna, Austria). Differences 

in demographic and clinical characteristics between the 
training and validation cohorts were compared using 
Mann-Whitney U test for non-normally distributed 
continuous variables and chi-square test for categorical 
variables. Statistical significance was determined using 
a two-tailed alpha = 0.05. Feature selection employed a 
two-step approach. First, the least absolute shrinkage 
and selection operator (LASSO) regression with 10-fold 
cross-validation was applied to the training cohort 
to identify potential predictors. Subsequently, these 
LASSO-selected variables underwent backward stepwise 
Cox regression analysis. Multicollinearity among the final 
selected variables was assessed using variance inflation 
factor (VIF). Model performance was evaluated through 
multiple approaches. Discrimination was assessed using 
time-dependent receiver operating characteristic (ROC) 
curves for 2-, 3-, and 5-year mortality predictions in 
both training and validation sets. Calibration curves 
were plotted to assess the agreement between predicted 
and observed outcomes. The clinical utility of the model 
was evaluated using decision curve analysis (DCA). The 
prognostic value of categorical variables was assessed 
using Kaplan-Meier survival analyses. For continuous 
variables, optimal cutoff values were determined using 
the ‘survminer’ package. The relationships between con-
tinuous predictors and mortality were examined using 
restricted cubic splines (RCS) with three knots placed at 
the 10th, 50th, and 90th percentiles to assess potential 
non-linear associations. A nomogram was constructed 
to provide a practical tool for individual risk prediction. 
Further analysis using random survival forest with 1000 
trees was performed to identify the top five most impor-
tant variables from our nine predictors. The optimal 
node size was determined through iterative testing from 
1 to 75. Subsequently, comparative analyses between our 
nine-variable model and models constructed using these 
top five variables were conducted. Model comparisons 
included time-dependent ROC curves, calibration plots, 
and decision curve analyses at 2-, 3-, and 5-year time 
points in both training and validation cohorts.

Result
Patient characteristics and outcomes
Baseline demographic and clinical characteristics of the 
total cohort (N = 445) are detailed in Supplementary 
Table 1. The median age was 63.98 years (IQR: 52.58–
72.84), with a male predominance (68.31%). Lifestyle fac-
tors revealed that 47.41% of patients had smoking history 
(27.19% current smokers, 20.22% former smokers) and 
37.97% reported alcohol consumption. Electrocardio-
graphic evaluation demonstrated a median ventricular 
rate of 80.00 beats/min (IQR: 68.00–92.00), QRS dura-
tion of 98.00 ms (IQR: 86.00-110.00), and QT inter-
val of 400.00 ms (IQR: 368.00-430.00). Comprehensive 
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echocardiographic assessment revealed multiple cardiac 
abnormalities. The median ejection fraction was 45.00% 
(IQR: 35.00–56.00), with systolic and diastolic dysfunc-
tion observed in 9.66% and 24.94% of patients, respec-
tively. Cardiac chamber measurements showed left atrial 
cavity enlargement in 46.52% of patients and right atrial 
cavity enlargement in 23.37%. The majority of patients 
(93.48%) presented with valvular regurgitation, distrib-
uted across tricuspid (mild: 58.65%, moderate: 13.71%, 
severe: 4.72%), mitral (mild: 53.93%, moderate: 16.85%, 
severe: 5.17%), and aortic valves (mild: 35.96%, moder-
ate: 8.99%, severe: 2.02%). Additional structural findings 
included segmental wall motion abnormalities (26.52%), 
pericardial effusion (13.71%), valvular annulus calcifi-
cation (6.52%), and ventricular aneurysm (5.62%). The 
median NT-proBNP level was 2.94 × 10³ pg/mL (IQR: 
1.05–8.89). For the main analysis, patients were ran-
domly divided into training (n = 312) and validation 
(n = 133) cohorts, with baseline characteristics presented 
in Table 1. During a median follow-up of 4.14 years (IQR: 
2.57–4.68), 142 deaths (31.91%) occurred. The majority 
of baseline characteristics showed no significant differ-
ences between the two cohorts, including age, gender, 
cardiovascular risk factors, cardiac structural parameters, 
and NT-proBNP levels (all p > 0.05). Only NYHA func-
tional classification (p = 0.037) and several electrocardio-
graphic parameters including ventricular rate (p = 0.023), 
atrial rate (p = 0.017), and QRS count (p = 0.021) showed 
significant differences between the groups, suggesting 
overall comparable baseline characteristics between the 
training and validation cohorts.

Feature selection using LASSO regression
LASSO regression with 10-fold cross-validation was 
performed to select potential predictors from the train-
ing cohort. Supplementary Fig.  4 illustrates the feature 
selection process using LASSO regression. The opti-
mal lambda value was determined to be 0.043 through 
cross-validation (Supplementary Fig.  4A). The coeffi-
cient variation curve demonstrates how variables were 
selected with increasing penalty (Supplementary Fig. 4B). 
At this optimal lambda value, 15 variables were selected 
and their relative contributions are visualized in Supple-
mentary Table 4. Aortic valve annulus calcification and 
left ventricular systolic dysfunction showed the stron-
gest positive associations (coefficients: 0.473 and 0.455, 
respectively), followed by tricuspid regurgitation severity 
and NYHA classification (coefficients: 0.197 and 0.164, 
respectively). Moderate associations were observed for 
age, right pulmonary artery diameter, NT-proBNP level, 
and atrial septal defect (coefficients ranging from 0.010 
to 0.020). Several variables including intracardiac shunts, 
QRS duration, and right ventricular diameter showed 
weaker associations (coefficients < 0.010), while smoking 

status was the only variable with a negative coefficient 
(-0.009). Detailed coefficients of all selected variables are 
presented in Supplementary Table 4.

Multivariable Cox regression analysis in training cohort
The 15 variables identified by LASSO regression were 
further refined through backward stepwise Cox regres-
sion analysis. Multivariate analysis identified nine inde-
pendent predictors of all-cause mortality (Table  2). 
Structural cardiac abnormalities emerged as the stron-
gest predictors, with atrial septal defect (HR: 3.783, 95% 
CI: 0.886–16.14), aortic valve annulus calcification (HR: 
2.124, 95% CI: 1.076–4.192, P = 0.030), and left ventricu-
lar systolic dysfunction (HR: 2.031, 95% CI: 1.136–3.631, 
P = 0.017) showing the highest hazard ratios. Tricus-
pid regurgitation severity was also significantly associ-
ated with mortality (HR: 1.360, 95% CI: 1.044–1.773, 
P = 0.023). Among clinical parameters, age (HR: 1.034, 
95% CI: 1.017–1.050, P < 0.001) and NT-proBNP level 
(HR: 1.027 per 1000 pg/mL increase, 95% CI: 1.007–
1.048, P = 0.009) were significant predictors. Electrocar-
diographic parameters including QRS duration showed 
modest but significant associations (HR: 1.010, 95% CI: 
1.003–1.018, P = 0.009) (Table  2). Variance inflation fac-
tor analysis confirmed the absence of significant multi-
collinearity among these predictors, with all VIF values 
below 1.25 (Supplementary Table 5).

Model performance assessment
The discriminative ability of the model was evaluated 
using time-dependent receiver operating characteristic 
(ROC) curves for 2-, 3-, and 5-year mortality predictions 
(Fig. 2). In the training cohort, the model demonstrated 
good discrimination with AUCs of 0.726 (95% CI: 0.648–
0.805), 0.755 (95% CI: 0.691–0.820), and 0.809 (95% CI: 
0.737–0.881) for 2-, 3-, and 5-year mortality, respectively 
(Fig. 2A). These findings were validated in the validation 
cohort, which showed AUCs of 0.686 (95% CI: 0.585–
0.787), 0.678 (95% CI: 0.582–0.774), and 0.706 (95% CI: 
0.547–0.866) for the corresponding time points (Fig. 2B). 
The overall C-index was 0.720 (95% CI: 0.665–0.775) in 
the training set and 0.649 (95% CI: 0.569–0.729) in the 
validation set. Time-dependent AUC trends are pre-
sented in Supplementary Fig.  5, showing consistent 
discriminative performance across different follow-up 
periods.

Model calibration assessment
The model’s calibration was evaluated through calibra-
tion plots comparing predicted versus observed survival 
probabilities at 2-, 3-, and 5-year time points (Fig. 3). In 
the training cohort (Fig. 3A), the calibration curves for all 
three time points closely followed the 45-degree diagonal 
line, indicating good agreement between predicted and 
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[ALL]
N = 445

Train
N = 312

Test
N = 133

P value

Death 0.178
  No 303 (68.09%) 219 (70.19%) 84 (63.16%)
  Yes 142 (31.91%) 93 (29.81%) 49 (36.84%)
Gender 0.936
  Female 141(31.69%) 98(31.41%) 43(32.33%)
  Male 304(68.31%) 214(68.59%) 90(67.67%)
Smoke 0.700
  Never smoker 234 (52.58%) 165 (52.88%) 69 (51.88%)
  Former smoker 121(27.19%) 87(27.88%) 34(25.56%)
  Current smoker 90(20.22%) 60(19.23%) 30(22.56%)
Drink 0.279
  Non-drinker 276 (62.02%) 200 (64.10%) 76 (57.14%)
  Occasional drinker 115 (25.84%) 74 (23.72%) 41 (30.83%)
  Regular drinker 54 (12.13%) 38 (12.18%) 16 (12.03%)
NYHA 0.037
  II 155 (34.83%) 119 (38.14%) 36 (27.07%)
  III 216 (48.54%) 148 (47.44%) 68 (51.13%)
  IV 74 (16.63%) 45 (14.42%) 29 (21.80%)
VHD 1.000
  No 386 (86.74%) 271 (86.86%) 115 (86.47%)
  Yes 59 (13.26%) 41 (13.14%) 18 (13.53%)
Presence of shunt 0.109
  No 438 (98.43%) 305 (97.76%) 133 (100.00%)
  Yes 7 (1.57%) 7 (2.24%) 0 (0.00%)
Shunt at great vessel level left to right 0.328
  No 440 (98.88%) 307 (98.40%) 133 (100.00%)
  Yes 5 (1.12%) 5 (1.60%) 0 (0.00%)
Shunt at atrial level left to right 0.328
  No 440 (98.88%) 307 (98.40%) 133 (100.00%)
  Yes 5 (1.12%) 5 (1.60%) 0 (0.00%)
Segmental wall motion abnormality 1.000
  No 327 (73.48%) 229 (73.40%) 98 (73.68%)
  Yes 118 (26.52%) 83 (26.60%) 35 (26.32%)
Pericardial effusion 0.059
  No 384 (86.29%) 276 (88.46%) 108 (81.20%)
  Yes 61 (13.71%) 36 (11.54%) 25 (18.80%)
Left ventricular diastolic dysfunction 0.688
  No 334 (75.06%) 232 (74.36%) 102 (76.69%)
  Yes 111 (24.94%) 80 (25.64%) 31 (23.31%)
Left ventricular systolic dysfunction 0.636
  No 402 (90.34%) 280 (89.74%) 122 (91.73%)
  Yes 43 (9.66%) 32 (10.26%) 11 (8.27%)
Left ventricular cavity 0.905
  No 375 (84.27%) 262 (83.97%) 113 (84.96%)
  Yes 70 (15.73%) 50 (16.03%) 20 (15.04%)
Right ventricular cavity 0.886
  No 388 (87.19%) 273 (87.50%) 115 (86.47%)
  Yes 57 (12.81%) 39 (12.50%) 18 (13.53%)
Left atrial cavity 0.242
  No 238 (53.48%) 173 (55.45%) 65 (48.87%)
  Yes 207 (46.52%) 139 (44.55%) 68 (51.13%)
Right atrial cavity 0.116

Table 1  Baseline characteristics of the training and validation cohorts
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[ALL]
N = 445

Train
N = 312

Test
N = 133

P value

  No 341 (76.63%) 246 (78.85%) 95 (71.43%)
  Yes 104 (23.37%) 66 (21.15%) 38 (28.57%)
Atrial septal defect 0.558
  No 442 (99.33%) 309 (99.04%) 133 (100.00%)
  Yes 3 (0.67%) 3 (0.96%) 0 (0.00%)
Apical thrombus 0.290
  No 436 (97.98%) 304 (97.44%) 132 (99.25%)
  Yes 9 (2.02%) 8 (2.56%) 1 (0.75%)
Ventricular aneurysm 0.990
  No 420 (94.38%) 295 (94.55%) 125 (93.98%)
  Yes 25 (5.62%) 17 (5.45%) 8 (6.02%)
Valve annulus calcification 0.944
  No 416 (93.48%) 291 (93.27%) 125 (93.98%)
  Yes 29 (6.52%) 21 (6.73%) 8 (6.02%)
Aortic valve annulus calcification 1.000
  No 417 (93.71%) 292 (93.59%) 125 (93.98%)
  Yes 28 (6.29%) 20 (6.41%) 8 (6.02%)
Mitral valve annulus calcification 0.680
  No 438 (98.43%) 306 (98.08%) 132 (99.25%)
  Yes 7 (1.57%) 6 (1.92%) 1 (0.75%)
Prosthetic valve 1.000
  No 433 (97.30%) 303 (97.12%) 130 (97.74%)
  Yes 12 (2.70%) 9 (2.88%) 3 (2.26%)
Aortic prosthetic valve 0.674
  No 439 (98.65%) 307 (98.40%) 132 (99.25%)
  Yes 6 (1.35%) 5 (1.60%) 1 (0.75%)
Mitral prosthetic valve 1.000
  No 436 (97.98%) 305 (97.76%) 131 (98.50%)
  Yes 9 (2.02%) 7 (2.24%) 2 (1.50%)
Presence of stenosis 0.770
  No 422 (94.83%) 297 (95.19%) 125 (93.98%)
  Yes 23 (5.17%) 15 (4.81%) 8 (6.02%)
Aortic valve stenosis severity 0.209
  0 433 (97.30%) 305 (97.76%) 128 (96.24%)
  1 6 (1.35%) 3 (0.96%) 3 (2.26%)
  2 3 (0.67%) 1 (0.32%) 2 (1.50%)
  3 3 (0.67%) 3 (0.96%) 0 (0.00%)
Mitral valve stenosis severity 0.169
  0 429 (96.40%) 302 (96.79%) 127 (95.49%)
  1 12 (2.70%) 9 (2.88%) 3 (2.26%)
  2 2 (0.45%) 1 (0.32%) 1 (0.75%)
  3 2 (0.45%) 0 (0.00%) 2 (1.50%)
Presence of regurgitation 0.944
  No 29 (6.52%) 21 (6.73%) 8 (6.02%)
  Yes 416 (93.48%) 291 (93.27%) 125 (93.98%)
Aortic regurgitation severity 0.585
  0 236 (53.03%) 168 (53.85%) 68 (51.13%)
  1 160 (35.96%) 108 (34.62%) 52 (39.10%)
  2 40 (8.99%) 28 (8.97%) 12 (9.02%)
  3 9 (2.02%) 8 (2.56%) 1 (0.75%)
Mitral regurgitation severity 0.093
  0 107 (24.04%) 84 (26.92%) 23 (17.29%)

Table 1  (continued) 
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[ALL]
N = 445

Train
N = 312

Test
N = 133

P value

  1 240 (53.93%) 162 (51.92%) 78 (58.65%)
  2 75 (16.85%) 53 (16.99%) 22 (16.54%)
  3 23 (5.17%) 13 (4.17%) 10 (7.52%)
Tricuspid regurgitation severity 0.642
  0 102 (22.92%) 76 (24.36%) 26 (19.55%)
  1 261 (58.65%) 182 (58.33%) 79 (59.40%)
  2 61 (13.71%) 40 (12.82%) 21 (15.79%)
  3 21 (4.72%) 14 (4.49%) 7 (5.26%)
Pulmonary regurgitation severity 0.590
  0 254 (57.08%) 175 (56.09%) 79 (59.40%)
  1 163 (36.63%) 118 (37.82%) 45 (33.83%)
  2 22 (4.94%) 16 (5.13%) 6 (4.51%)
  3 6 (1.35%) 3 (0.96%) 3 (2.26%)
Left ventricular wall thickness status 0.879
  No 378 (84.94%) 264 (84.62%) 114 (85.71%)
  Yes 67 (15.06%) 48 (15.38%) 19 (14.29%)
Interventricular septal thickness status 0.214
  No 442 (99.33%) 311 (99.68%) 131 (98.50%)
  Yes 3 (0.67%) 1 (0.32%) 2 (1.50%)
Pulmonary artery mean pressure 0.874
  No 365 (82.02%) 257 (82.37%) 108 (81.20%)
  Yes 80 (17.98%) 55 (17.63%) 25 (18.80%)
Diastolic dysfunction 0.688
  No 334 (75.06%) 232 (74.36%) 102 (76.69%)
  Yes 111 (24.94%) 80 (25.64%) 31 (23.31%)
Systolic dysfunction 0.636
  No 402 (90.34%) 280 (89.74%) 122 (91.73%)
  Yes 43 (9.66%) 32 (10.26%) 11 (8.27%)
Ventricular rate(bpm) 80.00 [68.00;92.00] 79.00 [66.00;91.00] 83.00 [71.00;95.00] 0.023
Atrial rate(bpm) 79.00 [69.00;92.00] 79.00 [67.00;90.25] 79.00 [73.00;100.00] 0.017
QRS Duration(ms) 98.00 [86.00;110.00] 98.00 [86.00;108.25] 96.00 [86.00;112.00] 0.926
QT Interval(ms) 400.00[368.00;430.00] 402.00[370.00;432.50] 400.00[362.00;426.00] 0.107
QTc Calculation(ms) 461.00[435.00;484.00] 460.00[434.75;482.00] 465.00[435.00;488.00] 0.389
QRS Count 13.00 [11.00;15.00] 13.00 [11.00;15.00] 14.00 [12.00;16.00] 0.021
Q Onset(ms) 217.00[213.00;220.00] 217.00[213.00;220.00] 217.00[213.00;221.00] 0.626
Q Offset(ms) 265.00[262.00;270.00] 265.00[262.00;270.00] 265.00[261.00;271.00] 0.858
T Offset(ms) 417.00[402.00;433.00] 418.00[404.00;435.00] 416.00[398.00;429.00] 0.143
QTc Fredericia(ms) 437.00[416.00;461.00] 438.00[417.00;461.00] 436.00[413.00;460.00] 0.609
QTc Framingham(ms) 437.00[416.00;459.00] 437.00[417.00;459.25] 435.00[415.00;458.00] 0.473
Age(years) 63.98 [52.58;72.84] 64.09 [52.30;73.03] 63.35 [53.05;72.60] 0.662
SBP(mmHg) 131.00[116.00;145.00] 130.00[115.00;143.00] 133.00[117.00;148.00] 0.352
DBP(mmHg) 75.00[67.00;86.00] 75.00[67.00;85.00] 77.00[67.00;88.00] 0.501
HR(bpm) 79.00[71.00;93.00] 79.00[70.00;91.25] 80.00[72.00;96.00] 0.241
EF(%) 45.00[35.00;56.00] 45.00[35.00;57.00] 44.00[35.00;56.00] 0.616
Aortic diameter(mm) 32.00[30.00;35.00] 32.00[30.00;35.00] 32.00[30.00;35.00] 0.698
Left atrial anteroposterior diameter(mm) 42.00[39.00;46.00] 42.00[39.00;46.00] 42.00[39.00;46.00] 0.488
Left ventricular posterior wall thickness(mm) 11.00[10.00;11.00] 11.00[10.00;11.00] 11.00[10.00;11.00] 0.643
Right atrial diameter transverse(mm) 38.00[34.00;43.00] 38.00[33.00;42.00] 38.00[34.00;45.00] 0.173
Right ventricular diameter transverse(mm) 35.00[32.00;40.00] 35.00[32.00;39.00] 36.00[33.00;41.00] 0.445
Left ventricular shortening fraction(mm) 24.00[18.00;30.00] 24.00[18.00;30.00] 24.00[18.00;29.00] 0.653
Right pulmonary artery diameter(mm) 12.00[11.00;13.00] 12.00[11.00;13.00] 12.00[11.00;13.00] 0.410

Table 1  (continued) 
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observed survival probabilities. The validation cohort 
(Fig.  3B) demonstrated satisfactory calibration, particu-
larly for 2- and 3-year predictions, though with slightly 
wider confidence intervals due to the smaller sample size. 
The 5-year predictions showed some deviation in the 
middle range of predicted probabilities but maintained 

reasonable calibration at both ends of the prediction 
spectrum.

Clinical decision curve analysis
Decision curve analysis was performed to evaluate the 
clinical utility of the prediction model at different time 
points (Fig. 4). In the training cohort, the model showed 

Table 2  Multivariate Cox regression analysis of variables associated with All-cause mortality
Characteristics β SE HR CI Z P
NYHA 0.251 0.157 1.285 0.944–1.75 1.595 0.111
Left ventricular systolic dysfunction 0.708 0.296 2.031 1.136–3.631 2.389 0.017
Atrial septal defect 1.331 0.74 3.783 0.886–16.147 1.797 0.072
Aortic valve annulus calcification 0.753 0.347 2.124 1.076–4.192 2.171 0.03
Tricuspid regurgitation severity 0.308 0.135 1.36 1.044–1.773 2.276 0.023
QRS Duration 0.01 0.004 1.01 1.003–1.018 2.628 0.009
T Offset -0.006 0.004 0.994 0.986–1.002 -1.441 0.149
Age 0.033 0.008 1.034 1.017–1.05 4.017 0
NT-proBNP/1000 0.027 0.01 1.027 1.007–1.048 2.618 0.009
Abbreviation: NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain natriuretic peptide

Fig. 2  Time-dependent ROC Curves for Mortality Prediction. (A) Training cohort. (B) Validation cohort

 

[ALL]
N = 445

Train
N = 312

Test
N = 133

P value

BMI(kg/m²) 24.97[22.47;27.68] 24.89[22.53;27.56] 25.25[22.47;27.82] 0.604
NT-proBNP/1000(pg/mL/1000) 2.94[1.05;8.89] 2.81[0.98;8.41] 3.37[1.49;10.96] 0.104
Median: The middle value of the dataset when arranged in ascending order

IQR: Interquartile Range, the range between the 1st quartile (Q₁) and the 3rd quartile (Q₃) of the dataset

n: Frequency, the count of occurrences of a particular value

%: Percentage, the proportion of a particular value relative to the total sample size

Abbreviation: NYHA: New York Heart Association; VHD: Valvular heart disease; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HR: Heart rate; EF: Ejection 
fraction; BMI: body mass index; NT-proBNP: N-terminal pro-brain natriuretic peptide

Table 1  (continued) 
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consistent net benefit across various threshold prob-
abilities at 2-year (Fig.  4A), 3-year (Fig.  4C), and 5-year 
(Fig.  4E) follow-up, outperforming both “treat all” and 
“treat none” strategies within a reasonable range of 
threshold probabilities (approximately 0.1 to 0.6). The 
validation cohort demonstrated similar patterns of net 
benefit at 2-year (Fig.  4B), 3-year (Fig.  4D), and 5-year 
(Fig.  4F) time points, though with slightly lower mag-
nitude of benefit compared to the training cohort. The 
model maintained positive net benefit across a wide 
range of threshold probabilities, suggesting its potential 
clinical value in guiding treatment decisions.

Construction of a prediction nomogram in training cohort
Based on the multivariate Cox regression analysis, a 
nomogram was constructed to predict 2-, 3-, and 5-year 
survival probabilities (Fig.  5). The nomogram incorpo-
rated nine independent predictors: NYHA class (0–20 
points), left ventricular systolic dysfunction (0–29 
points), atrial septal defect (0–54 points), aortic valve 
annulus calcification (0–30 points), tricuspid regurgita-
tion severity (0–37 points), QRS duration (0–58 points), 
T wave offset (0–44 points), age (0-100 points), and 
NT-proBNP level (0–38 points). Total points were cal-
culated by summing the points assigned to each predic-
tor, with a range of 0-280 points. The corresponding 2-, 
3-, and 5-year survival probabilities could be estimated 
based on the total points, with higher total points indi-
cating worse survival. For example, a total point score of 
122 corresponded to a 2-year survival probability of 0.90, 

while a score of 247 indicated a 2-year survival prob-
ability of 0.10. Similar interpretations could be made for 
3-year (range: 105–230 points) and 5-year (range: 85–210 
points) survival predictions.

Survival analysis based on key predictors
Kaplan-Meier analyses were performed to evaluate the 
survival differences stratified by key predictors identi-
fied in the nomogram. For continuous variables (Fig. 6), 
optimal cutoff values were determined using maximally 
selected rank statistics (Supplementary Table 6). QRS 
duration (cutoff: 102 ms, p = 0.011), age (cutoff: 71.1 
years, p < 0.0001), and NT-proBNP (cutoff: 3,833 pg/
mL, p < 0.0001) demonstrated significant stratification of 
survival outcomes, while T wave offset (cutoff: 400 ms) 
showed a non-significant trend (p = 0.12). For categorical 
variables (Supplementary Fig. 6), NYHA functional clas-
sification demonstrated the strongest prognostic strati-
fication (p < 0.0001), with the number at risk decreasing 
from 155, 216, and 74 at baseline to 98, 123, and 30 at 
4 years for classes II, III, and IV, respectively. Left ven-
tricular systolic dysfunction was significantly associated 
with survival (p = 0.005), with worse outcomes in the 
dysfunction group (n = 32) compared to those without 
dysfunction (n = 280). Aortic valve annulus calcification 
showed strong prognostic value (p = 0.00051), with nota-
bly worse survival in patients with calcification (n = 20) 
versus without (n = 292). Atrial septal defect showed a 
marginal association with survival (p = 0.087), though 
interpretation was limited by the small number of cases 

Fig. 3  Calibration Curves for 2-, 3-, and 5-year Survival Predictions. (A) Training cohort. (B) Validation cohort. The diagonal dashed lines represent perfect 
calibration. Error bars indicate 95% confidence intervals
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(n = 3). Tricuspid regurgitation severity also demon-
strated significant survival differences across no (n = 76), 
mild (n = 182), moderate (n = 40), and severe (n = 14) 
grades (p = 0.0085). Statistical details regarding the opti-
mal cutoff values and their corresponding test statistics 
are provided in Supplementary Table 6. For the survival 

analysis of 9 variables, only NT-proBNP had missing val-
ues. We have added the survival curves for the original 
data in Supplementary Fig. 7, and the conclusions drawn 
from both the original and imputed data are consistent.

Fig. 4  Decision Curve Analysis for the Prediction Model. Decision curves for 2-year (A, B), 3-year (C, D), and 5-year (E, F) mortality prediction in the training 
(A, C, E) and validation (B, D, F) cohorts. The x-axis shows the threshold probability, and the y-axis shows the net benefit. Red line represents the nomo-
gram, green line represents treating all patients, and blue line represents treating no patients
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Nonlinear association analysis
To explore the complex relationships between con-
tinuous predictors and mortality risk, we performed 
restricted cubic spline analyses both in the main model 
(Fig.  7) and with covariate adjustment (Supplemen-
tary Fig.  8). For each continuous variable, we adjusted 
for the other eight significant predictors identified in 
the multivariate Cox regression analysis, excluding the 
variable under investigation. In the adjusted analysis, 
NT-proBNP maintained a significant non-linear associa-
tion with mortality (P for overall < 0.001, P for non-lin-
ear < 0.001), characterized by a steep increase in hazard 
ratio up to 15,000 pg/mL followed by a plateau and slight 
decline. Age similarly demonstrated robust association 
with mortality (P for overall < 0.001) and marginally sig-
nificant non-linearity (P for non-linear = 0.059), showing 
a relatively stable risk until age 60 years followed by an 
exponential increase. QRS duration exhibited a modest 
linear trend without statistical significance (P for over-
all = 0.213, P for non-linear = 0.605), while T wave offset 
showed no significant association with mortality (P for 
overall = 0.857, P for non-linear = 0.721) after covariate 
adjustment. These patterns remained consistent in both 
unadjusted and adjusted analyses, suggesting the robust-
ness of these relationships independent of other signifi-
cant clinical predictors.

Random survival forest analysis
To assess variable importance and compare with the Cox 
model, we constructed a random survival forest model 
using the training cohort. The optimal model parameters 
were determined through iterative testing of node sizes 
ranging from 1 to 75 (Supplementary Table 8). Using 
1000 trees and an optimal node size of 7, the model 
achieved an out-of-bag error rate of 31.76%. Variable 
importance analysis revealed age and NT-proBNP as the 
strongest predictors, followed by QRS duration and clini-
cal parameters including tricuspid regurgitation sever-
ity, NYHA class, and cardiac structural abnormalities 
(Fig. 8). The error rate stabilized after approximately 400 
trees (Supplementary Fig. 9), suggesting adequate model 
convergence (Figs. 9 and 10).

Model comparison across different time horizons
Comprehensive model comparisons were performed 
for 2-, 3-, and 5-year mortality predictions. The follow-
ing models were used for mortality prediction: Model 
A: NYHA + Left ventricular systolic dysfunction + Atrial 
septal defect + Aortic valve annulus calcification + Tri-
cuspid regurgitation severity + QRS Duration + T Off-
set + Age + NT-ProBNP/1000; Model B: Age; Model C: 
NT-ProBNP/1000; Model D: QRS Duration;

Model E: Tricuspid regurgitation severity; Model F: 
NYHA. For 2-year prediction in the training cohort, 
Model A (incorporating all nine variables) showed 

Fig. 5  Nomogram for Predicting 2-, 3-, and 5-year Survival Probabilities in Heart Failure Patients. NYHA: 2: II; 3: III; 4: IV. Atrial septal defect: 0: No;1: Yes. 
Aortic valve annulus calcification: 0: No;1: Yes Abbreviation: NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain natriuretic peptide
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superior discrimination (AUC = 0.726, 95% CI: 0.648–
0.805) compared to single-predictor models, with 
Models B (AUC = 0.600, 95% CI: 0.509–0.691) and C 
(AUC = 0.685, 95% CI: 0.608–0.763) showing moderate 
performance. The discriminative ability improved for 
3-year prediction, with Model A achieving an AUC of 
0.755 (95% CI: 0.691–0.820), and further increased for 
5-year prediction (AUC = 0.809, 95% CI: 0.737–0.881). 
In the validation cohort, Model A maintained stable 

performance across all time points (2-year: AUC = 0.686, 
95% CI: 0.585–0.787; 3-year: AUC = 0.678, 95% CI: 0.582–
0.774; 5-year: AUC = 0.706, 95% CI: 0.547–0.866). Nota-
bly, Model B (age alone) showed comparable or slightly 
better performance in the validation cohort for longer 
time horizons (3-year: AUC = 0.694, 95% CI: 0.598–0.789; 
5-year: AUC = 0.723, 95% CI: 0.576–0.871) (Supplemen-
tary Figs. 8–11, Figs. 11 and 12).Calibration plots demon-
strated good agreement between predicted and observed 

Fig. 6  Kaplan-Meier Survival Curves for Continuous Variables in the Final Model. (A) QRS duration stratified by cutoff value of 102 ms. high:>102ms; 
low: ≤102ms. (B) T wave offset stratified by cutoff value of 400 ms. high:>400ms; low: ≤400ms. (C) NT-proBNP stratified by cutoff value of 3,833 pg/mL. 
high:>3,833 pg/mL; low: ≤3,833 pg/mL. (D) Age stratified by cutoff value of 71.1 years. high:>71.1 years; low: ≤71.1 years Abbreviation: NT-proBNP: N-
terminal pro-brain natriuretic peptide
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probabilities across all time points, particularly for Mod-
els A and B. Decision curve analyses consistently showed 
that Model A provided superior net benefit across a 
wider range of threshold probabilities compared to sim-
plified models and default strategies, with this advantage 
being most pronounced in 5-year predictions.

Discussion
In this comprehensive study of heart failure prognosis, we 
developed and validated a multimodal prediction model 
integrating demographic characteristics, ECG parame-
ters, echocardiographic measurements, NT-proBNP lev-
els, and NYHA classification. Our model demonstrated 

Fig. 8  Variable Importance Analysis from Random Survival Forest Model. (A) Feature importance according to aggregated SurvSHAP(t) values. (B) Distri-
bution of aggregated SurvSHAP(t) values across different variable levels

 

Fig. 7  Unadjusted Restricted Cubic Spline Analysis of Continuous Variables and Mortality Risk. (A) NT-proBNP level. (B) QRS duration. (C) T wave offset. (D) 
Age. Red lines represent hazard ratios and pink shaded areas represent 95% confidence intervals
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robust predictive performance with C-indices of 0.720 
(95% CI: 0.665–0.775) in the training cohort and 0.649 
(95% CI: 0.569–0.729) in the validation cohort. Notably, 
the model showed excellent discrimination for 5-year 
mortality (AUC = 0.809, 95% CI: 0.737–0.881) and main-
tained consistent calibration across different time points. 
In a similar study, Lin et al. developed a predictive model 
for all-cause mortality in patients with coexisting HF and 
atrial fibrillation [24]. This model identified eight key pre-
dictors: age, sex, New York Heart Association (NYHA) 

heart function class III or IV, history of myocardial 
infarction, and levels of albumin, triglycerides, N-termi-
nal pro-B-type natriuretic peptide, and blood urea nitro-
gen. This is broadly similar to the risk factors we selected. 
Furthermore, in another study, a prognostic score inte-
grating remotely recorded heart failure symptoms and 
clinical risk factors was developed and validated to pre-
dict mortality risk after myocardial infarction. The study 
found that combining heart failure symptoms with clini-
cal variables provides better risk stratification than the 

Fig. 9  Discriminative Performance of Different Models for 3-Year Mortality Prediction. Model A: NYHA + Left ventricular systolic dysfunction + Atrial septal 
defect + Aortic valve annulus calcification + Tricuspid regurgitation severity + QRS Duration + T Offset + Age + NT-ProBNP/ 1000; Model B: Age; Model C: 
NT-ProBNP/ 1000; Model D: QRS Duration; Model E: Tricuspid regurgitation severity; Model F: NYHA
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currently proposed GRACE score [25]. These studies 
emphasize the importance of integrating various clinical 
parameters to develop prognostic models that can aid in 
the management of heart failure patients.

Relationship between age and mortality risk
This study highlights that age is a significant predictor of 
mortality in HF patients, demonstrating a marked non-
linear relationship, particularly after the age of 60, where 
the risk of death increases rapidly. This phenomenon 

reflects the pathophysiological changes occurring dur-
ing cardiovascular aging, including myocardial stiffness, 
reduced β-adrenergic responsiveness, and impaired cal-
cium ion influx regulation [26, 27]. With advancing age, 
the structural and functional degradation of the cardio-
vascular system progressively worsens, including arte-
rial stiffening, increased cardiac load, and compensatory 
cardiac remodeling [28]. These changes, by altering the 
heart’s pumping ability, not only increase the incidence 
of HF but also exacerbate its severity. Research indicates 

Fig. 10  Calibration and Clinical Utility of Different Models for 3-Year Mortality Prediction. Model A: NYHA + Left ventricular systolic dysfunction + atri-
al septal defect + Aortic valve annulus calcification + Tricuspid regurgitation severity + QRS Duration + T Offset + Age + NT-ProBNP/ 1000; Model B: Age; 
Model C: NT-ProBNP/ 1000; Model D: QRS Duration; Model E: Tricuspid regurgitation severity; Model F: NYHA
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that age-related vascular dysfunction and increased arte-
rial stiffness are closely associated with the progression of 
cardiac remodeling [29]. These structural and functional 
alterations can accelerate the progression of HF by affect-
ing hemodynamics, coronary blood flow, and cardiac 
output [30, 31]. Therefore, age is not only an independent 
risk factor for HF but also contributes to an accelerating 
increase in mortality risk as comorbidities accumulate.

Electrophysiological remodeling and heart failure 
progression
Electrocardiogram (ECG) parameters, especially QRS 
duration and T-wave characteristics, have become cru-
cial tools in the prognostic assessment of HF patients. 
QRS duration reflects the electrophysiological activity 
of the heart’s surface and can be used to assess whether 
the ventricular myocyte depolarization process is func-
tioning normally. In HF patients, the electrocardiogram 
typically shows prolonged QRS duration [32, 33]. Studies 
have shown that HF patients with a QRS duration < 120 
ms exhibit better cardiac function compared to those 
with a QRS duration > 120 ms. Moreover, QRS duration 
is positively correlated with the left ventricular diam-
eter [34, 35]. The results of this study indicate that for 
each 1-millisecond increase in QRS duration, the risk of 
mortality in heart failure patients increases by 1%. The 
mechanism underlying prolonged QRS duration in HF 
patients is primarily due to myocardial ischemia and 
ventricular remodeling, which lead to an increase in the 
relative surface area of myocardial cell membranes. This 
results in a reduction in the number of Na+/K + pumps, 
causing pump dysfunction. Consequently, the synchroni-
zation of cardiac mechanical activity is impaired, and the 
depolarization velocity of the action potential is signifi-
cantly slowed, leading to a prolonged QRS duration [36]. 
Prolonged QRS duration is also associated with impaired 
atrial synchrony, which can cause cardiac hemodynamic 
disturbances, a decline in ejection fraction, and myo-
cardial cell damage. This, in turn, increases the risk of 
myocardial fibrosis and necrosis, contributing to major 
adverse cardiovascular events [37]. Abnormal T-waves 
generally reflect disturbances in cardiac repolarization, 
which may be related to electrolyte imbalances or intrin-
sic cardiac electrophysiological alterations [38, 39]. In 
HF patients, T-wave abnormalities are closely associated 
with fatal arrhythmias such as atrial fibrillation and ven-
tricular fibrillation, suggesting that changes in T-wave 
morphology could serve as early signals of electrophysi-
ological remodeling and possess significant prognostic 
value [40, 41].

Structural heart disease and mortality risk
Echocardiographic parameters play a key role in the 
prognostic assessment of HF patients. Left ventricular 

systolic dysfunction, atrial septal defects, aortic valve cal-
cification, and tricuspid regurgitation (TR) are common 
structural cardiac abnormalities in HF patients, particu-
larly left ventricular systolic dysfunction. Patients with 
reduced ejection fraction typically have a poor progno-
sis [3, 42, 43]. Left ventricular dysfunction impairs the 
heart’s pumping capacity and further increases cardiac 
workload through elevated intracardiac pressures, lead-
ing to cardiac dilation [44]. As the disease progresses, left 
ventricular remodeling and fibrosis become irreversible 
pathological features, significantly reducing contractile 
function and worsening clinical symptoms [45]. Although 
atrial septal defects are relatively rare, they have a signifi-
cant impact on prognosis by increasing right heart load, 
potentially leading to right heart failure [46]. Moreover, 
these defects can induce hemodynamic instability, fur-
ther increasing mortality risk. Therefore, early identifica-
tion and correction of such structural defects are crucial 
for improving patient outcomes [47]. Aortic valve calci-
fication, a common pathological feature in elderly HF 
patients, is closely associated with left ventricular systolic 
dysfunction [48]. Calcification not only increases the 
mechanical burden on the heart but also leads to valvu-
lar dysfunction and hemodynamic abnormalities, signifi-
cantly raising mortality risk [48]. Tricuspid regurgitation 
(TR), a prevalent structural abnormality in HF patients, is 
closely related to mortality risk. Severe TR leads to right 
heart pressure overload and can ultimately result in right 
heart failure, closely linked to pulmonary hypertension 
caused by left heart failure [49]. TR increases the burden 
on the right ventricle, potentially leading to right atrial 
dilation and systemic venous congestion, thereby wors-
ening HF symptoms and significantly reducing survival 
rates [50]. Therefore, the assessment and management of 
TR should be of critical importance in clinical practice.

NT-proBNP and heart failure prognosis
NT-proBNP, a cardiac biomarker, has been widely uti-
lized for the diagnosis and prognostic evaluation of 
HF. Studies indicate a non-linear relationship between 
NT-proBNP levels and mortality risk, with a significant 
increase in mortality risk when NT-proBNP concentra-
tions exceed 3000 pg/mL [51]. This finding is consistent 
with existing literature and suggests that elevated NT-
proBNP levels are closely related to the severity of car-
diac pressure overload and dysfunction [52]. NT-proBNP 
reflects not only cardiac pressure load but also cardiac 
dilation, fibrosis, and neurohormonal activation [53]. 
In long-term HF patients, increased NT-proBNP levels 
often signal disease progression, and its dynamic changes 
provide important prognostic information for clinicians 
[54]. Therefore, NT-proBNP holds significant clinical 
value in predicting mortality risk in HF patients and, 
when used in conjunction with other biomarkers and 



Page 19 of 21Li et al. BMC Cardiovascular Disorders          (2025) 25:221 

imaging parameters, can significantly improve prognostic 
accuracy [55].

NYHA classification and clinical prognosis of heart failure
The NYHA functional classification is a standardized 
tool for assessing the clinical severity of HF. This study 
found that as the NYHA class increases, mortality risk 
also rises, closely reflecting worsening functional status 
[56, 57]. However, due to the subjective nature of the 
NYHA classification, interobserver variability may affect 
its accuracy in different clinical settings [58, 59]. Thus, 
combining objective cardiac function indicators, such 
as echocardiographic findings, NT-proBNP levels, and 
ECG parameters, can provide a more precise assessment 
of HF prognosis [60]. Although the NYHA classification 
is commonly used to evaluate HF severity, its limitations 
lie in not fully reflecting individual patient differences 
[61]. Therefore, comprehensive analysis and multidi-
mensional assessment are essential for more accurate 
prognostication.

Application of machine learning and artificial intelligence 
in heart failure prognosis
In recent years, machine learning and artificial intel-
ligence (AI) have shown immense potential in the risk 
prediction, early diagnosis, and personalized treatment 
of HF. AI technologies can analyze vast amounts of clini-
cal data to identify complex patterns that traditional 
statistical methods may miss, offering new insights into 
early HF intervention [62, 63]. By integrating multimodal 
data, including biomarkers, imaging features, and ECG 
parameters, AI can significantly enhance the accuracy 
of mortality risk prediction in HF and provide a basis 
for personalized treatment decisions [64]. Deep learning 
models are increasingly used in HF prognosis, and it is 
anticipated that AI will play an increasingly vital role in 
HF management, facilitating more precise and individu-
alized treatment approaches [65, 66]. Furthermore, AI’s 
advantages in integrating and analyzing complex data can 
offer intelligent support for clinical decision-making [67, 
68].

The strengths of our study include a comprehensive 
multimodal approach, rigorous validation, and clinically 
relevant timeframes. The model’s excellent discrimina-
tion and calibration at different time points highlight its 
practical utility in both short-term and long-term risk 
prediction. Several limitations of our study should be 
noted. First, the follow-up duration was relatively short, 
with a median follow-up of 4.14 years. Longer follow-
up periods may provide a more complete picture of the 
long-term prognostic performance of the model. Future 
studies will include extended follow-up to assess its long-
term utility. Second, our cohort was derived from a sin-
gle large tertiary hospital in China, which may limit the 

generalizability of our findings to other ethnic popula-
tions. We plan to pursue international multicenter col-
laborations in the future to validate the model across 
diverse populations. Third, the sample size of our study 
was relatively small, with only 445 patients included. This 
may affect the robustness of the model’s performance, 
and we plan to include a larger cohort in future studies 
to further evaluate the model’s validity. Fourth, the data 
used were primarily based on static features, and we did 
not collect laboratory test results or echocardiographic 
data at multiple time points during patients’ hospital-
ization. In future studies, we plan to incorporate more 
longitudinal data and repeated measurements to more 
comprehensively assess disease progression and enhance 
the accuracy of the predictive model. Fifth, the absence 
of advanced imaging data, such as cardiac magnetic 
resonance imaging (CMR), is a limitation of this study. 
CMR provides detailed information on cardiac structure 
and function that could potentially improve the model’s 
predictive accuracy. However, due to the relatively low 
proportion of patients who underwent CMR and the 
challenges in extracting imaging data, we were unable 
to include CMR data in this analysis. We recognize the 
potential benefits of incorporating such data and will 
consider its inclusion in future versions of the model. 
Lastly, while the model performed well in the validation 
cohort, we observed that age alone showed comparable 
performance to the full nomogram, particularly for lon-
ger follow-up periods. This finding highlights the contin-
ued importance of age as a key prognostic factor in the 
long-term management of heart failure patients.

Conclusion
This study provides a comprehensive analysis of the rela-
tionship between various clinical parameters and mor-
tality risk in HF patients, emphasizing the critical role 
of indicators such as electrocardiogram (ECG), echo-
cardiography, and NT-proBNP in risk prediction. With 
the continued advancement in the understanding of HF 
pathophysiology and the application of cutting-edge 
technologies, there is great potential for further improv-
ing prognostic evaluation in HF patients through more 
precise biomarkers and artificial intelligence models. 
This progress is expected to facilitate the development 
of more personalized treatment strategies, enhancing 
patient outcomes in the future.
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