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Abstract

A heart arrhythmia refers to a set of conditions characterized by irregular heart- beats, with an increasing mortality
rate in recent years. Regular monitoring is essential for effective management, as early detection and timely treatment
greatly improve survival outcomes. The electrocardiogram (ECG) remains the standard method for detecting arrhyth-
mias, traditionally analyzed by cardiolo- gists and clinical experts. However, the incorporation of automated technol-
ogy and computer-assisted systems offers substantial support in the accurate diagno- sis of heart arrhythmias. This
research focused on developing a hybrid model with stack classifiers, which are state-of-the-art ensemble machine-
learning techniques to accurately classify heart arrhythmias from ECG signals, eliminating the need for extensive
human intervention. Other conventional machine-learning, bagging, and boosting ensemble algorithms were

also explored along with the proposed stack classifiers. The classifiers were trained with a different number of fea-
tures (50, 65, 80, 95) selected by feature engineering techniques (PCA, Chi-Square, RFE) from a dataset as the most
important ones. As an outcome, the stack clas- sifier with XGBoost as the meta-classifier, trained with 65 important
features determined by the Principal Component Analysis (PCA) technique, achieved the best performance among all
the models. The proposed classifier achieved a perfor- mance of 99.58% accuracy, 99.57% precision, 99.58% recall,
and 99.57% f1-score and can be promising for arrhythmia diagnosis.
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Background

A heartbeat is a periodic relaxation and contraction of
the heart muscle that drives blood through the circula-
tory system [1, 2]. In a healthy heart, impulses follow a
regu- lar and coordinated pattern, often referred to as a

*Correspondence:

Muhammad Nazrul Islam

nazrul@cse.mist.ac.bd

! Department of Computer Science and Engineering, Ahsanullah
University of Science and Technology, Tejgaon, Dhaka 1208, Bangladesh

2 Department of Computer Science and Engineering, Military Institute

of Science and Technology, Mirpur Cantonment, Dhaka 1216, Bangladesh
? Institute for Intelligent Systems Research and Innovation (ISSRI), Deakin
University, 75 Pigdons Rd, Warun Ponds, Victoria 3216, Australia

4 Department of Computer Science and Engineering, United International
University (UIU), Madani Avenue, Badda, Dhaka 1212, Bangladesh

B BMC

sinus rhythm [3]. Heart arrhythmia is a common cardiac
condition that describes any abnormal heart rhythm.
It occurs when the electrical impulses that regulate the
heartbeat go awry, causing the heart to beat quickly,
slowly, or irregularly. Arrhythmia can happen inde-
pendently or with other cardiovascular conditions [4].
Although some arrhythmias are not dangerous, some
have the potential to cause abrupt cardiac arrest, heart
failure, stroke, and other cardiovascular diseases (CVDs).
An estimated 17.7 million people died because of CVDs
in 2017, which accounts for 31% of all deaths [5]. An
essential tool in diagnos- ing arrhythmia is the electro-
cardiogram (ECG) besides other biointegrated wear-
able and implantable optoelectronic devices [6-9]. ECG
is a crucial medical equipment that captures the heart’s
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excitability, transmission, and recovery [10]. The result
of an ECG is a signal representation corresponding to
the heart’s electrical activity. Physi- cians inspect the
pattern of the signals to identify any arrhythmias. With
the advent of artificial intelligence and machine learning
[11], researchers have been trying their best to incorpo-
rate machine learning in classifying arrhythmia in ECG
signals.

ML techniques have been used in multidisciplinary
fields for prediction purposes that include health infor-
matics [12, 13], disaster forecasting [14], agriculture [15],
monitoring systems [16], and so on. Similarly, several ML
[17] and Deep learning (DL) [18, 19] techniques have
been applied to classify heart arrhythmia. However, there
is always room for improvement. Initially, ML algorithms
were used to carry out such classification tasks. Melgani
et al. [20] demonstrated the SVM algorithm’s capacity
to generalize the classification of ECG beats. They used
Particle Swarm Opti- mization (PSO) to boost the SVM
classifier’s performance in terms of generalization (accu-
racy =89.72%). Kumar et al. [21] described a beat-to-beat
interval-based ECG classification approach for arrhyth-
mic beats. The beat-to-beat intervals were extracted
from the ECG signals and converted into Discrete Cosine
Transform (DCT) as part of the methodology. Then,
the transformed beats were classified using the Ran-
dom For- est algorithm (accuracy =92.16%). Park et al.
[22] created a system that uses features like P wave and
QRS complex for detecting heartbeats and the k-nearest
neighbor (KNN) algorithm for classifying them (97.22%
sensitivity and 97.4% specificity for heartbeat detection,
97.1% sensitivity and 96.9% specificity for classification).
Ardeti et al. [23] utilized an improved filtering method to
identify the extreme outliers of the signal for ranking fea-
tures. A heterogeneous classification model based on an
Opti- mized Random Forest (ORF) was also presented to
increase the true positive of the ECG data. The majority
voting technique was used to classify each type of heart-
beat (accuracy =96.17%).

Eventually, deep learning techniques have evolved,
and studies now focus more on these newer techniques.
Ubeyli [24] integrated recurrent neural networks (RNN)
and eigenvector techniques to extract features and clas-
sify ECG beats based on the extracted features. Guler and
Ubeyli utilized feedforward neural Networks (FENN)
[25] to classify ECG beats (accuracy =96.94%). Li et al.
[26]. suggested a general model based on ResNet to
achieve the automated classification of regular rhythm.
The 12- lead ECG signal was cut into a two-dimensional
plane and rendered like a grayscale image. The intrin-
sic features of the two-dimensional ECG were extracted
using DSE- ResNet. Furthermore, the DSE-ResNet’s
hyper-parameters were optimized using an orthogonal

Page 2 of 14

experiment approach, and classification performance
was increased using a multi-model voting strategy (test
f1-score =81.7%). For automatic arrhythmia clas- sifi-
cation, Ramkumar et al. [27] proposed a combination
of autoencoder (AE) and Bi-LSTM. An encoder in the
AE-biLSTM approach extracts higher-level features.
The decoder output reconstructs ECG signals using bi-
LSTM, and heartbeats are finally categorized (accuracy
=97.15%). Madan et al. [28] suggested a deep learning
technique that combined 2D Convolutional Neural Net-
work (2D-CNN) and Long Short Term Memory (LSTM)
to automate the detection and classification process. 2D
Scalogram pictures were created from 1D ECG data for
noise reduction and feature extraction. After obtaining
experimental data, the proposed model was designed,
which got 98.7% accuracy.

The stacking ensemble method, or the stack classifier,
is a noteworthy state-of-the- art process that integrates
the predictions of more than one base model to arrive
at the final prediction. It is an ensemble technique that
intends to acquire the capabilities of different models and
improve the final performance [29]. In a stack classifier,
the meta- learner model is used to aggregate the output
of various base models that have been trained on the
same dataset. The meta-learner learns to provide the final
predictions using the underlying models’ predictions as
input [30]. This architecture sets stack classifiers apart
from single models or traditional ensemble methods
like bagging and boosting. Though the stack classifier is
found to perform better than other individual techniques
in predictive tasks, this state-of-the-art approach is still
uncommon in classifying heart arrhythmia. Again, only
a few studies explored the optimal number of features
required to properly classify heart arrhythmia applying
numerous feature engineering techniques.

Therefore, the objectives of this research include
exploring the performances of conventional ML and
ensemble techniques for classifying heart arrhythmia
from ECG signals and proposing a stacking classifier
that employs an optimal number of features for classify-
ing heart arrhythmia more effectively. Therefore, the key
contributions of this research are as follows:

« A stack classifier that is trained and tested with five
conventional ML models (Sup- port Vector Machine
(SVM), K-Nearest Neighbours (KNN), Logistic
Regression (LR), Decision Tree (DT), Multi-Layer
Perceptron (MLP)) as weak learners and one model
as meta learner to classify the dataset. The meta
learner has been selected from the five different kinds
of bagging or boosting classifiers, namely Random
Forest (RF), Adaboost (AB), Gradient Boosting (GB),
eXtreme Gradient Boost- ing (XGB), and Categorical
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Boosting (CB). Each developed stack classifier is then
evaluated to determine the best-performing classifier.

+ For determining the number of optimal features,
three feature engineering tech- niques, namely the
Chi-Square Test, Principal Component Analysis, and
Recursive Feature Elimination, have been applied.
Each of the techniques selects different sets of fea-
tures from the dataset by their method of feature pri-
oritization. These features were then used by the ML
methods to classify heart arrhythmia.

« To validate the performance of the proposed stack
classifiers, each of the conven-tional, bagging, and
boosting ML models were trained separately using
the same dataset. A comparison was carried out
using different performance parameters.

The remainder of this paper is divided as follows:
Sect. 2 describes the methodology in detail. Section 3
presents the research results. Section 4 presents the dis-
cussions and concludes the paper.

Methodology

We divide our whole methodology into 5 phases, namely
data collection, data pre- processing, feature engineer-
ing, model development, and performance analysis. The
methodological overview of this systematic approach is
depicted in Fig. 1. The whole workflow is described in the
following subsections:

Data collection

At first, necessary data was collected. The dataset used
was the MIT-BIH arrhythmia database [31] taken from
PhysioNet [32]. The MIT-BIH dataset contained 2-chan-
nel ambulatory ECG recordings of 48 half-hour snippets
utilized from 47 patients in Beth Israel Hospital. The

Model Development

« Using features selected by PCA
« Using features selected by Chi-Square
« Using features selected by RFE

Method 1:Conventional ML classifiers
Method 2: Bagging classifiers
Method 3: Boosting classifiers
Method 4: Proposed stack classifiers

\ Yy

Fig. 1 The methodological overview

Data preprocessing

« Data augmentation
« Noise adjustment
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participants included 25 men ranging from 32 to 89 years
and 2 women ranging from 23 to 89 years. The partici-
pants had a mixed population of 60% inpatients and 40%
outpatients. The recordings were digitized over a ten mV
range at 360 samples per second per channel. More than
two cardiologists independently annotated the records.
Finally, around 110,000 annotations were obtained, each
having a heartbeat.

The dataset was processed by Kachuee et al. [33]. They
converted each of the annotations into a matrix form.
Each row of the matrix represents one heartbeat and has
188 columns. The first 187 columns indicate the ampli-
tude of the heartbeat at different time instances. The final
column represents the class of the heartbeat. This dataset
was used in this study to train the models. There were a
total of 5 classes in the dataset.

The train and test data were already split in the dataset.
There were 87,554 heart- beats in the train data, 72,471
of which were classified as “Normal” heartbeats (Fig. 2a).
The remaining heartbeats belonged to one of the four
classes of arrhythmia. 2,223 heartbeats were “Supraven-
tricular heartbeats” [34] (Fig. 2b), 5,788 heart- beats
were “Ventricular heartbeats” [35] (Fig. 2 (c)), 641 were
“Fusion heartbeats” (Fig. 2d) and the rest, 6,431 heart-
beats, did not fall into any of the other four classes, and
so were considered as “Mixed heartbeats” (Fig. 2e). The
test dataset had 21,892 heartbeats, with 18,118 normal,
556 supraventricular, 1,448 ventricular, 162 fusion, and
1,608 mixed heartbeats. Sample images of the five classes
of heartbeats available in the dataset are shown in Fig. 2.

Data synthesis

This phase addressed several data-related challenges to
enhance the training process. To begin with, the issue of class
imbalance within the dataset was tackled. After this, gaussian

Feature prioritization and
selection

» Using Principal
Component Analysis
(PCA) method

« Using Chi-Square method

» Using Recursive Feature

Elimination (RFE) memﬂ

< |

Performance Analysis

> in terms of Accuracy,
Precision, Recall, and
F1-score
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(b)

(c)

(d)

(e)

Fig. 2 Classes of Heartbeat: (@) Normal (b) Supraventricular (c) Ventricular (d) Fusion (e) Mixed

noise was added to the dataset to make the instances more

Class balancing

robust to noises. Then, the number of important features
was determined followed by feature engineering applying 3
different methods. An algorithm comprising the whole data
preprocessing phase is given in Algorithm 1.

Considering that the “normal” class boasted the high-
est number of instances, totaling 72,471, the Synthetic
Minority Oversampling Technique (SMOTE) method
[36] was implemented. The SMOTE method generates

Algorithm 1 Algorithm for data preprocessing

Input
* Raw dataset D
* Set of classes C

* Set of feature engineering methods FE

Output: A set of preprocessed datasets d

1 max «— —oo;
2 foreach i€ C do
3 if inumber > max then

a | max < i

s foreach i € C do
if Inumper < Max then
L Apply SMOTE on j;

8

o foreach x € D' do
10

11

| Processed Data D' < D' +i;

Xnoisy “— Xoriginal + N (0, 0.5);
| Processed Data D" < D" + Xnoisy;

12 Apply OLS to find the number of important features;
13 Based on the result, No of features K =[50, 65, 80, 95];
14 Create a set of preprocessed dataset d — [];

15 foreach i€ FE do

16 foreachj € Kdo
17
18 d.append(dy);

dij — Apply technique i on data D" for extracting j features;
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some synthetic instances of the classes with a lower
number of samples to reduce the class imbalance. The
formula for the SMOTE method is shown in Eq. 1.

Xsample = % + N(X random — X) (1)

Here, x,,,,,,. refers to the generated samples of minor-
ity classes x. Whereas, x,,,4,,, refers to a value chosen
randomly from the nearest neighbors of x with 0 < x <
1. This technique augments the instances in all classes
to a consistent count of 72,500, resulting in a massive
training dataset of 290,000 instances. The algorithm
followed for oversampling with SMOTE is given in

Algorithm 2.

Algorithm 2 Algorithm for oversampling
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Xnoisy = Xoriginal + N (0, 0.5) (2)
Xy0isy Tefers to the generated noisy samples from the

original samples x,,,;,,, with the addition of the random
variable N(0, 0.5). The random variable N was sampled
using the Gaussian distribution of mean 0 and standard
deviation 0.5. The impact of this noise addition on signal
characteristics is visualized in Fig. 3.

Likewise, for the test data, SMOTE harmonized the
instance counts across all classes to achieve a uniform
count of 20,000 instances, totaling 100,000 instances.
The same Gaussian noise was added to this dataset with
a mean distribution of 0 and a standard deviation of 0.5,

Input
* Minority class dataset Xminority

* N = Number of synthetic samples needed
* k = Number of k nearest neighbors

Output: Augmented dataset with synthetic samples

foreach fi € Xminority dO

1
2 Find the k nearest neighbors of fi in Xminority;

3 Randomly select N neighbors from the k-nearest neighbors;

a foreach selected neighbor xrandom do

5 Generate a random number n in the range [0, 1];

6 Compute the synthetic sample xsampie = fi + n(Xrandom — fi);
7 Add xsample to the synthetic samples set;

ECG signals are susceptible to various types of noise,
including interference from external electrical devices
and signal degradation due to electrode distance [37].
Gaus- sian noise was introduced to the dataset to bolster
the model’s resilience against noise and enhance its abil-
ity to generalize effectively to unseen data. The equation
to add Gaussian noise to the data is shown in Eq. 2.

ensuring consistency in noise robustness across the train-
ing and testing phases.

Feature engineering

Feature engineering is the process of selecting the fea-
tures with the most impor- tant attributes and eliminat-
ing less important features from a dataset to increase the

(a)

Fig. 3 ECG signal before and after adding Gaussian noise

(b)
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predictive performance of machine learning methods
[38]. It is a method of finding out the best subset of fea-
tures necessary to train a prediction model with supe-
rior performance. The dataset used in this research has
a total of 187 features for each data instance. Training
ML models with this enormous number of features is
time- consuming, difficult, and a likely chance of curse of
dimensionality [39]. Again, not all the features are neces-
sary to develop a proper model. Therefore, it is necessary
to find the right number of features that, when used to
train ML models, bring out the best performance in the
model with fewer complexities.

At first, the Ordinary Least Square (OLS) regression
method [40] was used to determine the number of data-
set features that held significant importance. The ran-
dom forest classifier determines the feature importance
based on the pureness of its leaf nodes. The purity of the
leaf nodes is 100% if all the nodes point to one class. Oth-
erwise, it is impure. The feature that shows more purity,
has more importance. It is noticeable from Fig. 4 that the
cumulative variances in data become stable at approxi-
mately 80 features. After that, the variance change is neg-
ligible. This infers that approximately 80 along the total
187 features hold more importance in determin- ing a
class of heartbeat. For a more rigorous approach, we
decide on a fixed number of different feature size closer
to 80 (50, 65, 80, and 95) to train the models. Now, the
3 feature engineering techniques were implemented on
the dataset. For each tech- nique, the most significant 50,
65, 80, and 95 features were selected, and the dataset with
the selected features was then used to train each of the
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models separately. The 3 techniques are briefly described
as follows:

Chi-Square test

The Chi-Square Test (CST) is one of the most useful fea-
ture engineering techniques in the field of ML [41]. It
carries out a statistical evaluation where deviation is cal-
culated from the predicted distribution when the feature
event is independent of the class value and feature prior-
ity is determined by observing the relationships between
them [42]. The formula of CST is shown in Eq. 3. In the
equation, the observed values are the total real observa-
tions that fit a particular feature i, and the expected val-
ues are the total observations that are expected to occur.
The prioritized features are selected based on the best
scores of x°. For selecting the k best features, the python
SelectKBest function was applied with k= n, where n is
the total number of features.

(Observed Value; — Expected Value;)?
Expected Value;

2
x* =3

(3)

Principal component analysis (PCA)

Principal Component Analysis (PCA) is a dimension
reduction tool that prioritizes features by observing the
correlation between characteristics to determine the
most important features or components [43]. PCA maps
the original n-dimensional con- structs into a k-dimen-
sional construct where k<n [44]. These k features

o =] o e [y
[=3] ~ o] ¥s] (=]
1 1 1 1 1

Cumulative explained variance
o
n
1

T
0 25 50 75

T T T T
100 125 150 175

Number of components

Fig. 4 Diagrammatic view of the number of features significant to the dataset
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are new principal attributes that reduce the curse of
dimensionality.

Recursive feature elimination (RFE)
Recursive Feature Elimination (RFE) is a wrapper technique
used for removing fea- tures from training data by ranking
them in the order of importance and eliminating the low-
ranked features [45]. This is a recursive method that applies
various ML models and determines feature importance at
every iteration by removing the least important ones.

The pseudocode of feature engineering is shown in
Algorithm 3.

Algorithm 3 Pseudocode for feature engineering
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Forest aggregates the results of several decision trees and
reaches the final decision.

Boosting classifier development

Technique 3 develops a boosting classifier for predic-
tion. A boosting classifier is an ensemble technique that
combines a group of weak learners into a strong learner
by reducing the error of the weak learners [48]. In this
research, 4 boosting classifiers were developed namely
Adaboost (AB), Gradient Boosting (GB), eXtreme Gradi-
ent Boosting (XGB), and Categorical Boosting (CB).

Input

* n = Set of all initial features
* k = Number of features wanted
®* FE = Feature Engineering Techniques (CST, PCl, RFE)

Output: R« = Reduced feature set with k features

foreach fi € n do

N B

w

a4 n — sort(relativeValuesl[fi]);
5 Rk — n.select(k);
6 return Ry;

relative significance of fi — FE;
relativeValues[fi] < relative importance of f;

Development of models

In this phase, the models were developed with a Python
tool called Scikit-learn [46] in the Kaggle platform. The
development of models was carried out in 4 phases or
techniques as seen in Fig. 1. The descriptions of the 4
techniques are given as follows:

Conventional ML model development

Technique 1 applies 5 conventional ML algorithms that
have been extensively used in health informatics. The
algorithms are SVM, KNN, Logistic Regression, Deci-
sion Tree, and MLP. These algorithms follow some
fundamental structures that are used to carry out pre-
dictive tasks.

Bagging classifier development

Technique 2 develops a bagging classifier for predic-
tion. A bagging classifier is an ensemble technique that
integrates more than one base model on a random sub-
set of the dataset with equal weights provided to each
model and decides on a final result based on the indi-
vidual predictions [47]. The bagging classifier used in
this research is the random forest classifier. The Random

Proposed stack classifiers development

Ensemble learning uses many classifiers to obtain bet-
ter forecasting accuracy than a single classifier; where
the method known as stacking ensemble learning com-
bines multiple weak classifiers using a meta-classifier.
In this method, each of the classifiers in the first level
receives the data samples as input. If the dataset has a
dimension of r x ¢, then each classifier in the first level
receives data of r x ¢ dimensions. Then, each classifier
provides its predictions. These predictions of the first
level, along with the true values, are used as features in
the classifier in the second level. If there are n classifiers
in the first level, then the classifier in the second level
will receive a dataset of r x (n +1). Lastly, the predic-
tion of the final classifier is considered as the final result
[49]. An illustration of the stack classifier mechanism is
given in Fig. 5.

The proposed method is a multi-layered stack architec-
ture where the dataset is preprocessed and then sent to
base learners at level 0. In level 0, the 5 conventional ML
algorithms have been kept which were used in technique
1. They are SVM, KNN, Logistic Regression, Decision
Tree, and MLP. Each base model learns from the dataset
independently applying its prediction method. Each base
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Level 1
classifier 1
Data samples Data samples Output Prediction
Level 1 Level 2
classifier 2 classifier
rxc rx (n+1) . E rx1
®
®
@
Level 1
classifier n
P / Balancing classes with SMOTE \
Adding Gaussian noise to data
Data Sample
Finding feature importance
Feature engineering with 3 different
Data
Preprocessing fethods /
Model 1 Model 2 Model 5 Level 0
SVM KNN MLP Base models
G _/‘
A
Initial
Predictions
Meta Learner Classifier
Random Forest/
Adaboost/ Level 1
Catboost/ Meta models
Gradient Boosting/
XGBoost
Final
Prediction

Fig. 5 Mechanism of stack classifier and the architecture of the proposed classifier

model predicts outputs which are denoted by P1, P2, P3,
P4, and P5 in Fig. 5. After this, the level 1 model receives
the output of these base models as their features and
gives the final output. 5 different algorithms were tried as
the level 1 model while keeping the same base models at

level 0. This resulted in 5 different types of the proposed
classifier. The models are the bagging and boosting mod-
els used in techniques 2 and 3, respectively. A conceptual
view of the proposed stack ensemble classifier has been
given in Fig. 5.
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Input :

® Processed dataset D

* A set of ML algorithms B

* Aset of ensemble ML algorithms E

Output: A set of developed stack classifiers M
1 B — [SVM, KNN, LR, MLP, DT]J;
2 E — [RF, AB, GB, CB, XGB];
3 M —[I;
4 foreachj € E do

5 Make a new stack classifier S;

6 foreachj € B do

7 | Add B[j] in the level 0 of S;

8 Add E[i] in the level 1 of S;

9 Trained Model S" — model-train(S, D);
10 | M.append(S);

Algorithm 4 Development of proposed stack classifier

Results
The performances of the ML models trained with differ-
ent sets of features were mea- sured in terms of accuracy,
precision, recall, and fl-score. The results of this rigor-
ous evaluation are shown in Tables 1, 2, 3 and 4, where
Table 1 shows the accuracy of the developed models,
Table 2 shows the precision of the developed models,
Table 3 shows the recall of the developed models, and
Table 4 shows the f1-score of the developed models. The
best performance among the models with the optimal
future set has been highlighted in all the tables.

It is noticeable from Tables 1, 2, 3 and 4 that the per-
formances of the proposed stack classi- fiers outperform
other conventional techniques. Among the proposed stack
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classifiers, the stack classifier with the XGBoost algo-
rithm as the meta-classifier achieved the best performance
among all the other models in all 4 performance param-
eters with the dataset of 65 features selected by the PCA
feature engineering technique. It achieved a remarkable
accuracy, precision, recall, and f1-score of 99.58%, 99.578%,
99.58%, and 99.579%, respectively. Thus, it is proved that,
among 187 features, 65 is the optimal number of features
required to train the ML models. It is also evident that, the
pro- posed stack classifier with XGBoost as the meta-clas-
sifier performs the best with the given dataset.

The fl-score of each model in predicting every
class where the models were trained with 65 features
extracted by the 3 different feature engineering tech-
niques are shown in Table 5. The reason for showing the
f1-score is because the fl1-score is the harmonic mean of
precision and recall, the other two evaluation metrics.
On the other hand, accuracy alone is not a reliable evalu-
ation metric since accuracy can be misleading some-
times [50]. The f1-score is shown for models trained with
the 65 most important features since the best-perform-
ing model was obtained when the models were trained
with the 65 most significant features. It is noticeable
from Table 5 that most of the classes have better f1-score
when the features were extracted by the PCA technique.
The best f1-score per class per model is provided in bold
font. From this, we can conclude with the given dataset,
the PCA technique is the best in extracting the 65 most
useful features for training the models.

Discussion

Three types of ensemble techniques with several classifi-
ers were explored, trained, and tested along with conven-
tional ML algorithms to classify heart arrhythmia from

Table 1 Comparison of accuracy of ML models utilizing different numbers of features

Performance with 50 Features
PCA RFE

Performance with 65 Features
PCA RFE

Type Models

Chi-Square Chi-Square

Performance with 80 Features
Chi-Square

Performance with 95 Features

PCA RFE Chi-Square PCA RFE

VM
KNN
Logistic

86.52
87.34

93.727273  89.32
97.818182  90.41

87.71
87.92

94.072727 89.23
97.809091 90.6

Conventional 68.89 73.918182  74.15 7039 76.090909 74.29

Regression
79.52
81.98
83.61
67.54

98.109091

91.418182

99.490909
68.9

82.78
85.79
86.69
68.66

8113
8213
84.51
71.99

97.790909
92.254545
99.472727
69.736364

83.7
84.39
86.73
67.38

Decision Tree
MLP
Random Forest
Adaboost
Gradient

Bagging

Boosting 84.67 89.154545  87.06 85.74 88.945455 87.26

Boosting
XGBoost
Catboost

Meta Learner

88.12
89.68

99.145455
98.4

90.08
91.32

88.94
90.75

99.118182
98.445455

90.39
91.75

69.1 97.127273  83.62 81.95 971 7131

Adaboost

Meta Learner 79.42 99.418182  83.64 8113 99.509091 83.81

Random Forest
Proposed
stack

Meta Learner
XGBoost

79.57 99.536364  83.72 81.67 99.581818 827

Classifier

Meta Learner

79.89 99.481818  83.73 82.24 99.536364 85.04

Catboost
Meta Learner
Gradient
Boosting

79.67 99.245455  82.82 82.68 99.390909 832

88.39
88.33

71.09

80.91

82.71

85.19
708

86.61

89.96
90.78

67.44

80.81

81.41

82.11

81.45

94.209091
97.845455

89.75
90.1

88.64
88.72

94309091  89.69
97.8 89.61

76.6 75.53 71.76 77372727  75.04

97.881818
93.154545
99.509091
70.663636

83.19
84.55
86.39
68.89

818
84.91
85.29
70.85

97.809091
92.227273
99.563636
70.763636

83.06

83.91
86.7

67.36

88.781818  86.91 86.73 888 87.05

99.2
98.527273

90.5
91.36

89.75
90.39

99.290909
98.509091

90.48
91.45

96.318182  70.96 84.45 86 57.76

99.4 82.98 819 99.518182  82.97

995 83.02 82.45 99.545455  83.78

82.65 84.01 82.65 99.572727  84.63

99.318182 8353 8241 99.354545  83.95
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Table 2 Comparison of precision of ML models utilizing different numbers of features

Type Models Performance with 50 Features Performance with 65 Features Performance with 80 Features Performance with 95 Features
Chi-Square PCA RFE Chi-Square PCA RFE Chi-Square PCA RFE Chi-Square PCA RFE
svm 86.94485 93827373 89783716 88031384 94.158568 80702257 88699315 94309675 9028322 88894475 94407348  90.416207
KNN 88220718 97871204 91150457  88.745439 97.859004 91312866  89.160950  97.892947 90940123 89434908  97.844466 90537157
Conventional Logistic
6835774 73920882  74.154286  69.921345 76.162387 7441881 70856974 76691972 7592459 71615865 77643318 75415093
Regression
Decision Tree 8447964 98115206 86490791 85043538 97.802999 86846444 84953147  97.892351 86627764 85114829  97.813428 86502323
MLP 82075598 91459967 86282247 8232344 92.29576 84477325 83136763 93180309 84959322 85077082 92276122 84301534
Bagging Random Forest ~ 88532088  99.491581 90210903  88.890848 99.473322 90181189  89.330666  99.509683  90.040169 89412383  99.563449  90.073922
Adaboost 66246866 68413491 6802799  70.755199 69.26663 66597251  69.67253 70177415 68378933  69.68451 70368051  66.574322
Boosting z;:f:; 84945001 89367656 87.519153  86.110471 89.23484 87710009 86970485  89.03178 87584672  87.212089  89.054753  87.618653
XGBoost 89.886282  99.145029 91696505  90.416543 99.120371 92118164 91281987 99203167 92038688 91179365 99293223  92.062012
Catboost 90.549455  98.409498 92274737 91511813 98.454101 92597914 916794 98530935 92397249 91240803 9851182 9239095
Meta Learner
81785852  97.310323  87.689143  87.103423 97.148414 6582700 74216292 96450874 64838822  87.042139  87.39453  49.175009

Adaboost

Proposed
Meta Learner

stack 87.026433  99.417122 88690556 86972746 99.507156 88618117 87114547  99.397555 88.068773 87492799 99516615  88.425236
Random Forest

Classifier
Meta Learner

86542757 99535165 88459659  87.090268  99.578936 87.631411  87.177593  99.498847 88098817  87.344629  99.544351 88429219
XGBoost

Meta Learner
87.012061  99.480756 88451724  87.42107 99533393 89377497  87.640441 87676867 88569579  87.676867  99.570682  88.784529
Catboost

Meta Learner
Gradient 86.631502  99.243626  88.036039  87.545036 99.38699 8822027  87.073849 9931472 88227192  87.497407 99353075 88511089

Boosting

Table 3 Comparison of recall of ML models utilizing different numbers of features

Type Models Performance with 50 Features Performance with 65 Features Performance with 80 Features Performance with 95 Features
Chi-Square PCA RFE Chi-Square PCA RFE Chi-Square PCA RFE Chi-Square PCA RFE
SVM 86.52 93.762221 89.32 87.71 94.106501 89.23 88.39 94.238204  89.75 88.64 94.339249  89.69
KNN 87.34 97.812095 90.41 87.92 97.8021 90.6 88.33 97.838372 90.1 88.72 97.792078  89.61
Conventional Logistic
N 68.89 73.938747 74.15 70.39 76.129881 74.29 71.09 76.640621  75.53 71.76 77.418915 75.04
Regression
Decision Tree 79.52 98.114136  82.78 81.13 97.796906 837 80.91 97.887744  83.19 818 97.814257  83.06
MLP 81.98 91457907  85.79 8213 92.275064 84.39 8271 93.17639 84.55 84.91 92.255277  83.91
Bagging Random Forest 83.61 99487168  86.69 8451 99.46915 86.73 8519 99.505436  86.39 8529 99559822 86.7
Adaboost 67.54 68.831092  68.66 71.99 69.69659 67.38 708 70.603963  68.89 70.85 70737285 6736
Gradient
Boosting - 84.67 89179487  87.06 85.74 88.97516 87.26 86.61 88.812292 8691 86.73 88.830666  87.05
oosting
XGBoost 88.12 99.144949  90.08 88.94 99.117907 90.39 89.96 99.200128 905 89.75 99290137 9048
Catboost 89.68 98395487 9132 90.75 98.442539 9175 90.78 98524722 9136 9039 98502701 9145
Meta Learner
69.1 97.116066  83.62 81.95 97.071649 71.31 67.44 96.353562  70.96 84.45 85.726374  57.76
Proposed Adaboost
Meta Learner
Stack 79.42 99.416317  83.64 8113 99.507227 83.81 80.81 99.398341  82.98 819 99.513297  82.97
Classifier Random Forest
Meta Learner
79.57 99.53388  83.72 81.67 99.580174 827 81.41 99.500117  83.02 82.45 99544735  83.78
XGBoost
Meta Learner
79.89 99.47916  83.73 8224 99.534381 85.04 82.11 82.65 84.01 82.65 99.569585  84.63
Catboost
Meta Learner
Gradient 79.67 99.24448 82.82 82.68 99.389632 83.2 8145 99.317228  83.53 8241 99.354305 83.95
Boosting

Table 4 Comparison of f1-score of ML models utilizing different numbers of features

Type Models Performance with 50 Features Performance with 65 Features Performance with 80 Features Performance with 95 Features
Chi-square  PCA RFE  Chi-square PCA RFE  Chisquare  PCA RFE  Chisquare  PCA RFE
svm 86556822 937727 89368473  87.696523 94115927 89283428 88393808  94.254474 89.815408 88661491 94354261 89789576
KNN §7.353429  97.808338 90425689  87.929686 97799598 90614523 88343102 97836295 90133428 88718124 97789152  89.648468
Conventional Logistic
682051 73904847 73841013  69.950198 76007522 74051543 70758823 76616605 75517921 71474733 77429435  75.06395
Regression
Decision Tree  79.816924 98083679 83054123 81436911 07755537 83938797 81025421  97.848795 83467625 82015456  97.772576 83350057
mLP 81967865 91450808 8583568 82115157 92277215 84344932 8278195 9373759 84635042 84963844 92258921 83990735
Bagging  Random Forest 83912881 99488969  86.969604  84.807135 99470771 86984807 85499267 99507199  86.646247 85631305 99561437 86918313
Adaboost 66535627 68564091 68032018 71113155 69398873 66620706 69784861 70207459 6839929  69.788981 70491034 66533863
Gradient
Boosting . 84712854 89218927  §7.139663 85794532 80037274 87333499 86695533 8886352  87.000165 86844668  88.886465  87.126998
oosting
XGBoost 8831604 9914223 90198261  89.067378 99115116 90529592 90084114  99.197932 90.604687  89.888732 99288985  90.601472
Catboost 89771967 98395892 9140443  90.828578 98443625 91825503 90886251 98523118 91446433 9045234 98501311 91520324
Metaleamer g ocoso3 97139316 83491433 82418851 97.068497 65822072 61841142 96305269 65388194 84516743 85696298  47.314263
Adaboost
Proposed
Meta Learner
Stack 79739615  99.416084 83817597 81313482 99506713 83939424 80850903 99396677 83.110908 82018304 9951469  83.198261
Random Forest
Classifier
Meta Learner
79671042 99533896 83769362 81769336  99.579102 82612813 81373398 99498307 8309315 82432804 99543651  83.903346
XGBoost
Meta Learner
80124826 99479212 83754863 82382379 9953323 85194969 82155406 8271726 84140731 8271726 99569837  84.765889
Catboost
Meta Learner
Gradient 79726252 9924296 82792387 82831668 99387904 83183019 81353922 99315578 835622 82440377 99353212 83974143

Boosting
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Table 5 F1-score of each model per class feature-engineered with 3 methods and 65 features

Model FE Method N \"4 S F M
CHI 81.65 83.04 88.56 87.6 97.63
SVM PCA 88.65 91.64 96.04 95.48 98.77
RFE 81.66 85.6 90.99 90.53 97.64
CHI 83.66 85.74 87.57 85.24 97.42
KNN PCA 95.61 97.35 97.78 99.16 99.1
RFE 86.51 89.93 91.16 87.58 97.9
CHI 51.41 67.81 62.2 80.63 87.7
LR PCA 59.56 73.63 72.59 83.49 91.23
RFE 58.53 68.63 71.09 80.58 91.43
CHI 73.18 79.97 81.88 77 95.16
DT PCA 94.63 98.53 97.08 99.67 98.87
RFE 75.64 80.75 86.74 81.26 95.3
CHI 70.63 77.62 82.98 85.73 93.61
MLP PCA 85.7 90.02 92.8 95.56 97.3
RFE 75.45 79.23 85.99 86.85 94.21
CHI 75.99 8141 89.19 80.12 97.33
RF PCA 98.76 99.69 99.36 99.84 99.7
RFE 78.61 84.29 91.41 83.05 97.55
CHI 46.07 64.83 70.85 84.08 89.73
AB PCA 51.1 68.26 59.73 83.03 84.87
RFE 43.46 63.68 64.16 78.62 83.19
CHI 76.16 82.72 86.96 87.71 95.43
GB PCA 80.14 86.86 88.95 93.22 96.03
RFE 79.61 84.51 88.31 88.24 96
CHI 82.88 86.22 89.9 88.35 97.98
XGB PCA 97.95 99.16 99.04 99.82 99.61
RFE 83.91 87.32 93.29 89.49 98.64
CHI 85.15 87.79 91.78 91.18 98.24
cB PCA 96.88 98.36 98.35 99.19 99.44
RFE 86.58 90 92.81 91.36 98.38
CHI 72.61 78.85 85.1 72.47 97.54
RF-Stack PCA 98.85 99.58 99.25 99.98 99.88
RFE 75.61 80.42 88.6 77.19 97.88
CHI 72.99 79.03 83.99 79.09 97
AB-Stack PCA 96.31 97.59 95.5 99.93 96.01
RFE 59.92 80.54 91.15 0 97.5
CHI 74.66 80.34 86.08 75.33 97.75
GB-Stack PCA 98.62 99.67 99.04 99.8 99.81
RFE 75.35 80.18 88.47 74.13 97.78
CHI 73.57 79.51 85.41 72.58 97.78
XGB-Stack PCA 98.98 99.78 99.36 99.96 99.81
RFE 74.6 80.58 88.24 73.84 98.21
CHI 74.59 79 85.55 75.36 97.41
CB-Stack PCA 98.89 99.71 99.25 99.96 99.86
RFE 76.53 79.87 90.61 80.65 98.32

ECG signals in this study. Most previous works utilized
only the conventional algorithms and very few studies
focused on the stack classifier, a state-of-the-art technol-
ogy. Therefore, the proposed technique based on a stack
classifier where conventional, bag- ging, and boosting
models were all integrated to achieve a better prediction
is a novel contribution in this domain.

Again, most of the previous studies did not utilize fea-
ture engineering techniques to reduce the number of
features and determine the optimal number of features.
There- fore, in this research, 3 different feature engineer-
ing techniques (Chi-square, PCA, and RFE) were applied
to determine the optimal number of features necessary
to train ML models with a satisfactory performance
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avoiding any complexities like curse of dimensionality,
training time, memory requirements and so on.

Finally, the performances of each of the developed
models were evaluated based on accuracy, precision,
recall, and fl-score to validate the efficacy and effective-
ness of the developed models. It was found that the stack
classifier that was developed using XGBoost as the meta-
classifier and trained with the dataset consisting of 65
features selected by the PCA method outperformed not
only all other models but also the previous works carried
out with the same dataset. A performance comparison
with the previous works is given in Table 6.

Novelty of the study

The proposed research presents a novel and advanced
approach to heart arrhythmia diagnosis by developing
a sophisticated stack classifier system that leverages
cutting- edge ensemble machine-learning techniques.
The model is designed with XGBoost as the meta-clas-
sifier, a robust and highly effective algorithm known
for its strong perfor- mance in classification tasks. This
approach is further enhanced by the incorporation of
advanced feature engineering techniques, including
Principal Component Analysis (PCA), to extract and
refine critical features from electrocardiogram (ECG)
signals. One of the primary innovations of this research
is the automation of the heart arrhythmia diagno-
sis process, significantly reducing the need for human
intervention. Traditionally, the analysis of ECG data
has relied heavily on cardiologists and clinical experts,
which can be time-consuming and prone to human
error. By utilizing this automated system, the research
addresses these limitations, offering a faster, more accu-
rate, and reliable alternative for detecting arrhythmias.

Table 6 Comparative analysis with existing ML approaches

Page 12 of 14

The ensemble machine-learning techniques employed
in this study, particularly the use of XGBoost, offer
substantial improvements over conventional machine-
learning methods. XGBoost’s ability to handle large
datasets, its superior speed, and its high predictive
power make it an ideal choice for this application.
Moreover, the integration of PCA allows for the selec-
tion of 65 optimal features from the ECG data, ensur-
ing that the classifier is trained with the most relevant
information, thus enhancing its performance.

The results of this study are highly promising, with
the stack classifier achieving exceptional performance
metrics: 99.58% accuracy, 99.57% precision, 99.58%
recall, and 99.57% Fl-score. These results not only
demonstrate the effectiveness of the pro- posed model
but also its potential to revolutionize the field of medi-
cal diagnostics, particularly in the area of arrhyth-
mia detection. By outperforming other conventional
machine-learning and ensemble algorithms, the pro-
posed stack classifier sets a new benchmark for accu-
racy and reliability in this domain.

This research provides a significant contribution to
the field of automated medical diagnostics. The novel
stack classifier system, combining XGBoost with PCA-
driven feature engineering, offers a powerful tool for
the accurate and timely diagnosis of heart arrhythmias.
This advancement has the potential to greatly improve
patient outcomes by facilitating early detection and
treatment, ultimately reducing the mor- tality rate asso-
ciated with heart arrhythmias. The system’s ability to
operate with minimal human intervention also makes it
highly scalable and adaptable for use in various clinical
settings, further enhancing its practical application in
healthcare.

Authors Modality Models used

Dataset

Performance Results

used

Classification of

Melgani et al. [20]

Kumar et al. [21]

Park et al. [22]

Ubeyli et al. [24]

Guler et al. [25]

Ardeti et al. [23]

Li et al. [26]

Ramkumar et al. [27]

Madan et al. [28]

This research

Electrocardiogram Signals
Classification of
Electrocardiogram Signals
Arrhythmia detection
and classification
Classification of

Electrocardiogram Signals
Classification of

Electrocardiogram Signals

Outlier Detection and Feature

Ranking in ECG Beats

Classification of ECG

signals from 2D data

Classification of ECG signals

ECG Arrhythmia Classification

Classification of Arrhythmia from ECG
signals by adopting the best model

SVM, PSO

Random Forest

KNN

RNN, Eigenvector
methods

FFNN

Hybrid Ensemble Method

DSE-RESNET

Hybrid model of Auto
Encoder and Bi-LSTM

CNN-LSTM Ensemble

Proposed Stack Classifiers

MIT-BIH
Overall accuracy of 89.72%

dataset

MIT-BIH
92.16% accuracy

dataset
97.22% sensitivity and 97.4% specificity MIT-BIH
for heartbeat detection. 97.1% sensitivity and

. L dataset

96.9% specificity for classification.

MIT-BIH
98.06% accuracy

dataset

MIT-BIH
96.94% accuracy

dataset
95.81% accuracy on ensemble deep learning

MIT-BIH
accuracy of 95.81% and 94.47% accuracy on

dataset
ensemble SVM.

CPsC2018
81.7% fl-score

dataset
98.33% positive predictive value, 97.15% accuracy, New N beat,
96.22% specificity, 99.43% sensitivity AFIB beat

MIT-BIH
98.7% accuracy

dataset
99.58% Accuracy, 99.57% Precision, MIT-BIH

99.58% Recall, 99.57% F1-score

dataset
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Limitations and future works

This research has certain limitations. Firstly, the clas-
sification methods based on image or signal process-
ing techniques were not explored. Secondly, this study’s
classification of heart arrhythmia was based solely on
2D data. Thirdly, Transfer learning models, such as pre-
trained CNN models, were not investigated due to their
reliance on image data. Fourthly, explainable AI, which
explains and justifies the AI system predictions, was
not explored in this research. Hence, future works may
focus on (a) employing image and signal processing tech-
niques with larger sample sizes for the detection of heart
arrhythmia from ECG signals, (b) categorizing heart
arrhythmia using image data, (c) training and evaluat-
ing untested models, and their performances, (d) incor-
porating explainable AI with the current research, and (e)
conducting a more detailed analysis of the complexities
of the models based on time and memory.

Conclusion

Machine learning plays a pivotal role in the precise and
timely diagnosis of heart abnormalities, especially in
detecting arrhythmias. Its capacity to continuously ana-
lyze electrocardiogram (ECG) data allows for the early
identification of patterns indicative of arrhythmias, ena-
bling swift intervention. Healthcare professionals may
incorporate these machine learning models into their
daily practice, enhancing patient care through real-time
monitoring and early warning systems.

The need for effective and unbiased analysis of large-
scale medical data drives the growing interest in ECG-
based cardiac arrhythmia analysis for heart-related
studies. Early recognition of heart problems is crucial
for prompt treatment and reduced mor- tality rates.
However, manual diagnosis of heart conditions is time-
consuming and requires expert operators due to the intri-
cacies of the heart’s functions. Thus, the methodology
described in this article can be a benchmark for accurate
and precise heart arrhythmia classification from ECG
signals. The high performances achieved by the proposed
methodology demonstrate the validity of this study.
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