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Abstract 

Background Heart failure (HF) is a major cause of mortality in critically ill patients and often requires intensive care. 
The hemoglobin glycation index (HGI), defined as the difference between predicted glycated hemoglobin (HbA1c) 
and measured HbA1c, may provide additional prognostic insights beyond traditional glycemic metrics.

Methods We conducted a retrospective analysis of 8,098 adult patients with HF from the MIMIC-IV database 
(2008–2022). All were first-time ICU admissions with available hematologic and metabolic data. Patients were strati-
fied into three groups (T1 ≤ − 1.26, − 1.26 < T2 < 1.74, T3 ≥ 1.74) based on HGI. Baseline characteristics were recorded 
within 24 h of ICU admission, including demographic data, disease severity scores, comorbidities, and medication 
use. Logistic regression and Cox proportional hazards models assessed the associations between HGI and in-hospital, 
30-day, and 1-year all-cause mortality, adjusting for age, sex, race, comorbidities, laboratory results, and relevant treat-
ments. Restricted cubic spline (RCS) analysis was performed to examine potential non-linear relationships. We used 
sensitivity analyses to increase the confidence in our primary outcome.

Results Patients in the lowest HGI group (T1) had significantly higher in-hospital, 30-day, and 1-year mortality 
than those in the other two groups. Specifically, T1 showed an 18.6% in-hospital mortality rate, compared with 12.3% 
and 9.7% in T2 and T3, respectively (p < 0.001). Fully adjusted models revealed that each 1-unit increase in HGI 
was associated with an approximate 12% reduction in in-hospital mortality risk (OR = 0.88; 95%CI: 0.83–0.93), and 
an 3% decreased risk of 1-year all-cause mortality (HR 0.97; 95%CI0.94~1.00). RCS analysis indicated a J-shaped rela-
tionship between HGI and mortality, underscoring the heightened risk associated with very low HGI. We conducted 
sensitivity analyses by separately excluding missing data, diagnosed sepsis, and diagnosed hepatic impairment, 
consistent with the primary analysis.

Conclusions In critically ill HF patients, extremely low HGI levels correlate with poorer short- and long-term sur-
vival. These findings suggest that HGI could serve as an adjunct risk stratification tool, prompting closer monitoring 
and potential intervention in patients with markedly low HGI.
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Background
Heart failure (HF) is a prevalent and serious condition 
that significantly impacts critically ill patients, contrib-
uting to high morbidity and mortality rates, especially 
within intensive care units (ICUs) [1, 2]. Its pathophysiol-
ogy is multifaceted, involving dysregulated inflammatory, 
metabolic, and neurohormonal pathways, all of which 
complicate disease management and exacerbate patient 
outcomes [3, 4]. The global incidence of HF continues to 
rise, positioning it as one of the leading causes of hospi-
talization and death, particularly in the elderly and those 
with multiple comorbidities [5].

A key aspect of HF management is the monitoring of 
blood glucose control, which is often impaired in these 
patients [1]. Hemoglobin glycation, a process where glu-
cose binds to hemoglobin, forms glycated hemoglobin 
(HbA1c), which is a marker commonly used to evaluate 
long-term blood glucose levels [6]. Recently, the hemo-
globin glycation index (HGI) has emerged as a more 
nuanced marker of glucose variability [7]. Unlike HbA1c, 
which provides a static measure of average blood glucose, 
HGI reflects fluctuations in glucose levels over time, 
offering potentially greater insight into glucose metabo-
lism dynamics [7, 8]. Elevated HGI has been associated 
with worse outcomes in patients with diabetes and car-
diovascular diseases [9, 10], suggesting that it could be an 
important prognostic tool.

In the context of HF, impaired glucose metabolism 
and insulin resistance are frequent complications [3]. 
Emerging evidence suggests that HGI may be a valuable 
predictor of prognosis in critically ill patients with heart 
failure, potentially correlating with all-cause mortality. 
High glycemic variability, reflected by an elevated HGI, 
has been linked to poor clinical outcomes, including 
increased mortality [9–11]. However, the exact relation-
ship between HGI and all-cause mortality in heart failure 
patients remains an area of ongoing investigation.

This study aims to evaluate the association between 
HGI and all-cause mortality in critically ill patients with 
heart failure using data from the Medical Information 
Mart for Intensive Care IV (MIMIC-IV) database, pro-
viding valuable insights that could inform clinical man-
agement strategies for this high-risk population.

Method
Study design and setting
Data were sourced from the U.S. public critical care data-
base, the MIMIC-IV 3.1 [12], which is hosted by the Beth 
Israel Deaconess Medical Center. This dataset includes 
information from 2008 to 2022, representing the Ameri-
can cohort.

Access to the databases was granted upon successful 
completion of the Collaborative Institutional Training 

Initiative certification (Certification numbers: 64820886 
for Wang). Given the retrospective nature of this study 
and the use of publicly available data, informed consent 
was waived. This study adhered to the Strengthening 
the Reporting of Observational Studies in Epidemiology 
guidelines ( Clinical trial number: not applicable).

The cohort was selected based on the following inclu-
sion criteria: (1) diagnosis of heart failure (HF); (2) 
first ICU admission. The exclusion criteria were: (1) 
age < 18 years; (2) ICU stay of less than 24 h; (3) missing 
HbA1c within 3  months pre-admission or FPG within 
24 h of admission. Exclusion was restricted to cases lack-
ing key variables essential for HGI calculation, namely 
admission glucose or HbA1c, resulting in 2,805 additional 
exclusions after initial screening. After applying these 
criteria, a final sample of 8,098 critically ill HF patients 
was included in the analysis. The sample size yielded EPV 
ratios of 64.25, 83.43, and 164.62 for in-hospital, 30-day, 
and 1-year mortality respectively, substantially exceed-
ing the recommended threshold of 5–10 EPV for all out-
comes and ensuring robust statistical power.

Data collection
We extracted baseline patient data within 24  h of ICU 
admission from the MIMIC-IV database17. This included 
demographic information (e.g., age, gender), as well 
as clinical variables such as disease severity measures 
(Sequential Organ Failure Assessment [SOFA], Simpli-
fied Acute Physiology Score II [SAPS II]). Addition-
ally, vital signs (heart rate, mean arterial blood pressure 
[MBP]) and laboratory test results (e.g., white blood cell 
count [WBC], hemoglobin, platelets, potassium, sodium, 
chloride, albumin, and creatinine) were recorded. The 
duration of mechanical ventilation, ICU stay, and overall 
hospitalization were also measured.

Comorbidities were identified using ICD-9 codes, 
including conditions such as hypertension, myocardial 
infarction(MI), stroke, atrial fibrillation (AF), chronic 
obstructive pulmonary disease (COPD), diabetes, 
renal failure, and cancer (Table  S1 in the Supplemen-
tal Material). The medication history, including insu-
lin, angiotensin-converting enzyme inhibitors (ACEI), 
angiotensin receptor blockers (ARB), calcium channel 
blockers (CCB), beta-blockers, statins, antiplatelets, 
and diuretics, was also documented. We employed a 
two-tiered approach to handling missing data: (1) Cases 
missing essential variables for HGI calculation (admis-
sion glucose or HbA1c) were excluded from the analysis 
as shown in our exclusion criteria; (2) For adjustment 
covariates with missing rates < 20%, we applied MissFor-
est imputation to preserve sample size and statistical 
power. The specific missing rates for all imputed variables 
are detailed in Table S2 in the Supplemental Material. For 
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variables with missing data, missing values were imputed 
using multivariate interpolation based on chained equa-
tions, utilizing the R (MICE) package [13]. The missing 
rates of the study variables are shown in Table S2 in the 
Supplemental Material.

HGI calculation
Linear regression models of fasting blood glucose (FPG) 
and HbA1c levels were established based on data from 
all study patients. With HbA1c as the dependent variable 
and FPG as the independent variable, the linear regression 
equation was established [9]: predicted HbA1c = 0.007 
* FPG + 5.37. The difference between the observed and 
predicted values of HbA1c is then calculated as HGI. Sub-
sequently, X-tile software (version 3.6.1, Yale University, 
New Haven, CT, USA) was employed to determine opti-
mal cut-off values for HGI based on survival outcomes, 
dividing the cohort into three groups (Figure S1): T1 
(≤ − 1.26), T2 (− 1.27 ≤ HGI ≤ 1.73), and T3 (≥ 1.74). X-tile 
is a bioinformatics tool that identifies statistically optimal 
cut-points by evaluating all possible divisions of a contin-
uous variable and selecting those that maximize the chi-
square value for survival differences [14].

Outcomes
The primary outcomes were hospitalization mortality 
and 1-year mortality rates. The secondary outcome was 
the 30-day mortality rate.

Statistical analysis
Patients were divided into three groups based on their 
HGI values. Baseline characteristics were presented as 
means (± standard deviation) for normally distributed 
variables, and medians with interquartile ranges (25th 
and 75th percentiles) for non-normally distributed data. 
Categorical variables were expressed as percentages. 
Fisher’s exact test was used to compare categorical data, 
while the Mann–Whitney U test and unpaired t-test were 
applied for skewed and normally distributed continuous 
variables, respectively.

To investigate the relationship between HGI and in-
hospital and long-term all-cause mortality, both univaria-
ble and multivariable logistical regression model and Cox 
proportional hazards regression models were used for 
analysis. Variables that showed significant baseline dif-
ferences or clinical relevance in both cohorts were incor-
porated into the final multivariable models. Model 1 was 
unadjusted; Model 2 was adjusted for age, gender, and 
race; Model 3 included adjustments for age, gender, race, 
body mass index (BMI), MI, AF, hypertension, diabetes, 
and stroke. Model 4 included all variables from Model 3, 
along with additional factors such as laboratory results 
and treatments, including hemoglobin, creatinine, ACEI/

ARB use, beta-blocker use, insulin use. A restricted cubic 
spline (RCS) analysis was conducted to assess the associ-
ation between HGI and all-cause mortality, adjusting for 
the same variables as in the multivariable models. Odd 
ratios(OR) and Hazard ratios (HR) with 95% confidence 
intervals (CI) were used to present the results. To further 
evaluate the potential of HGI to improve the identifica-
tion of incident mortality with traditional predictive per-
formance, we calculated the Area Under Curve (AUC).

Subgroup analyses were performed to evaluate the 
impact of HGI on all-cause mortality in various sub-
groups, stratified by age, gender, race, BMI, MI, stroke, 
diabetes. We used sensitivity analyses to increase the 
confidence in our primary outcome. All statistical anal-
yses were performed using R software (version 4.2.1) 
and the Free Statistics Analysis Platform (version 2.0). 
A two-tailed P value < 0.05 was considered statistically 
significant.

Results
Baseline characteristics
A total of 16,647 critically ill patients with HF were 
retrieved from the MIMIC IV database, and 13,842 
patients were entered into the statistical analysis after 
exclusion of patients younger than 18  years of age 
and ICU stay time < 24  h. Then we exclusion of those 
with missing HbA1c and glucose. Finally, we included 
8,098 critically ill patients with HF (Fig.  1). The partici-
pants were stratified into three distinct groups (Tertiles 
1–3) based on their HGI levels: T1: ≤ − 1.26, N = 818, 
T2: − 1.26 – 1.73, N = 6445, T3: ≥ 1.74, N = 835. The mean 
age of the study cohort was 71.1 years, of which 3364 
(41.5%) were female and of which 5410 (66.8%) were 
white.

A comparison of the three groups reveals that T2 has a 
higher mean age and a higher proportion of white indi-
viduals than the other groups. Patients in the T3 groups 
exhibited a significantly higher incidence of diabetes mel-
litus, MI, AF, renal failure, and stroke compared to the 
other three groups (P < 0.05). With regard to the severity 
of disease scores, significant differences were observed 
across all scores in the T1 groups. Specific baseline data 
can be found in Table 1.

Primary and secondary outcomes
Mortality rates were significantly higher in the T1 group 
at all time points compared to the other groups. Spe-
cifically, in-hospital mortality rates were 18.6%, 12.3% 
and 9.7% for the T1, T2, and T3 groups, respectively 
(P < 0.001). The 30-day mortality rates were 21.8%, 
16.2% and 13.3%, respectively (P < 0.001), and the 1-year 
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mortality rates were 39.2%,32.1% and 29.3% for the three 
groups (P < 0.001).

As shown in Fig.  2, Kaplan–Meier survival curves 
revealed significant differences in survival rates between 
the three HGI groups for both 30-day and 1-year mor-
tality. Patients in the lowest HGI group (T1) had sig-
nificantly lower survival rates at both 30 days and 1 year 
compared to those in the higher HGI groups (log-rank 
P < 0.05). However, no significant differences in survival 
rates were observed among the remaining groups (T1, 
and T2) at any of the time points.

To further analyze the association between HGI and 
the outcomes, the logistic regression and Cox propor-
tional hazards model were performed using the T1 as the 
reference group. In the fully adjusted model, for each unit 
increase in HGI, the risk of in-hospital all-cause mor-
tality decreased by 12% (OR = 0.88; 95%CI: 0.83–0.93; 
P < 0.001). When divided by groups of HGI and taking 
T1 as the reference, the risk was lower in T3 (OR = 0.44; 
95%CI: 0.32–0.60; P < 0.001) (Table 2).

Similarly, in the fully adjusted model, each unit increase 
in HGI was associated with an 3% decreased risk of 
1-year all-cause mortality (P = 0.028), with a significantly 
lower risk observed in T3 (P = 0.001). A similar pattern 
was found for 30-day all-cause mortality, where increased 
HGI levels were associated with higher mortality rates 
(Table 3).

The RCS curve analysis demonstrated a nonlinear rela-
tionship between HGI and all-cause mortality at both 
30-day and 1-year follow-up. Specifically, HGI exhibited 
a J-shaped association with mortality at both time points 
(Fig. 3).

Figure S2 shows the discrimination analysis used to 
evaluate whether HGI could improve the risk stratifica-
tion of incident mortality events. As we expected, we 
found that the joint HGI and OASIS model significantly 
outperformed OASIS alone, demonstrating an incremen-
tal prognostic value with a P-value < 0.05.

Subgroup analyses
In addition, we performed risk subgroup analyses of 
patient outcome events according to age, gender, race, 
BMI, MI, stroke, and diabetes. Results are presented 
in Fig.  4 and Figure S3-S4 in the Supplemental Mate-
rial. For 1-year mortality, no significant interactions 
were observed between HGI tertiles and any subgroup 
(all P for interaction > 0.05). Overall, higher HGI levels 
(T3 vs. T1) were associated with a reduced risk of mor-
tality (HR 0.75, 95% CI 0.63–0.90). This inverse asso-
ciation was consistent across subgroups, with notable 
effects in participants with BMI < 25  kg/m2 (HR 0.65, 
95% CI 0.46–0.90) and those with a history of stroke 
(HR 0.68, 95% CI 0.47–0.98). Similarly, in participants 
aged ≥ 65 years (HR 0.78, 95% CI 0.64–0.96), males (HR 

Fig. 1 The flowchart of patients’ selection. Abbreviations: ICU, intensive care unit; MIMIC-IV, Medical Information Mart for Intensive Care IV. Note: 
T1, ≤ − 1.26;, T2: − 1.26 – 1.73; T3: ≥ 1.74
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Table 1 Baseline characteristics of participants

Variables Total (n = 8098) T1 (n = 818) T2 (n = 6445) T3 (n = 835) P value

Demographics

 Age, (year) 71.1(13.1) 68.3 (13.5) 72.0 (13.1) 66.7 ( 12.2)  < 0.001

 Gender female, n (%) 3364(41.5) 330 (40.3) 2698 (41.9) 336 (40.2) 0.051

Race, n (%)  < 0.001

 White 5410 (66.8) 538 (65.8) 4395 (68.2) 477 (57.1)

 Other 2688 (33.2) 280 (34.2) 2050 (31.8) 358 (42.9)

Vital signs

 BMI, (kg/m2) 29.7 (7.9) 28.5 (7.6) 29.6 (7.8) 31.8 (8.2)  < 0.001

 respiratory rate,  (min−1) 19.5 (6.7) 20.3 (6.2) 19.4 (6.4) 19.5 (8.9)  < 0.001

 Heart rate,  (min−1) 19.5(6.7) 90.4 (21.7) 86.7 (19.5) 88.2 (19.6)  < 0.001

 MBP, (mmHg) 82.2(18.2) 82.4 (19.4) 82.0 (17.8) 83.7 (17.7) 0.032

Scores

 SOFA (score) 5.0 (3.0, 8.0) 7.0 (4.0, 10.0) 5.0 (3.0, 8.0) 5.0 (3.0, 8.0)  < 0.001

 SAPSII (score) 47.0 (36.0, 64.0) 55.0 (41.0, 76.0) 46.0 (35.0, 62.0) 48.0 (37.0, 64.0)  < 0.001

 OASIS (score) 33.1 (9.0) 35.2 (9.6) 32.9 (8.9) 32.4 (8.8)  < 0.001

Co-morbidities, n (%)

 Hypertension 7229 (89.3) 716 (87.5) 5734 (89) 779 (93.3)  < 0.001

 Myocardial infarction 2960 (36.6) 306 (37.4) 2269 (35.2) 385 (46.1)  < 0.001

 Stroke 1489 (18.4) 114 (13.9) 1209 (18.8) 166 (19.9) 0.002

 Atrial fibrillation 4717 (58.2) 465 (56.8) 3868 (60) 384 (46)  < 0.001

 COPD 2723 (33.6) 267 (32.6) 2200 (34.1) 256 (30.7) 0.111

 Renal failure 3288 (40.6) 370 (45.2) 2514 (39) 404 (48.4)  < 0.001

 Sepsis 4377 (54.1) 517 (63.2) 3433 (53.3) 427 (51.1)  < 0.001

 Diabetes 3915 (48.3) 279 (34.1) 2827 (43.9) 809 (96.9)  < 0.001

Laboratory tests

 Glucose, (mg/ml) 130.0 (107.0, 172.8) 99.0 (86.0, 117.0) 115.0 (104.0, 130.0) 137.0 (123.0, 160.0)  < 0.001

 HbA1c,(%) 6.5 (1.6) 5.2 (0.8) 6.2 (0.9) 10.0 (1.7)  < 0.001

 Hemoglobin, (g/dl) 10.2 (2.3) 9.9 (2.5) 10.3(2.3) 10.4 (2.3)  < 0.001

 WBC, (K/μL) 10.9 (7.9, 15.0) 11.6 (8.0, 16.6) 10.8 (7.9, 14.8) 11.0 (8.1, 15.3)  < 0.001

 Platelet, (K/μL) 187.0 (138.0, 252.0) 181.0 (126.0, 252.8) 185.0 (138.0, 250.0) 203.0 (153.5, 263.0)  < 0.001

 Potassium, (mmol/L) 4.3 (0.8) 4.4 (0.8) 4.3 (0.7) 4.3 (0.7)  < 0.001

 Sodium, (mmol/L) 138.2 (5.2) 137.3 (5.7) 138.3 (5.1) 138.0 (5.3)  < 0.001

 Chloride, (mmol/L) 102.7 (6.9) 101.5 (7.2) 102.9 (6.8) 102.0 (6.8)  < 0.001

 Creatinine, (mg/dl) 1.2 (0.9, 1.9) 1.4 (1.0, 2.5) 1.2 (0.9, 1.8) 1.3 (1.0, 2.1)  < 0.001

 BUN, (mg/dl) 25.0 (17.0, 41.0) 27.0 (18.0, 45.0) 24.0 (17.0, 40.0) 27.0 (18.0, 44.0)  < 0.001

 ALT, (U/L) 24.0 (15.0, 51.0) 25.0 (15.0, 64.0) 24.0 (15.0, 50.0) 25.0 (15.0, 48.0) 0.136

 Albumin, (g/dl) 3.4 (0.7) 3.3 (0.7) 3.5 ( 0.7) 3.4 (0.6)  < 0.001

 PT (s) 14.9 (13.0, 17.8) 14.7 (12.7, 18.4) 14.9 (13.0, 17.8) 14.3 (12.6, 17.1)  < 0.001

Treatments, n (%)

 ACEI/ARB 1865 (23.0) 156 (19.1) 1495 (23.2) 214 (25.6) 0.005

 Beta-blockers 6030 (74.5) 570 (69.7) 4828 (74.9) 632 (75.7) 0.004

 Statin 5351 (66.1) 503 (61.5) 4218 (65.4) 630 (75.4)  < 0.001

 Anti-platelet 5590 (69.0) 551 (67.4) 4430 (68.7) 609 (72.9) 0.026

 Diuretics 6413 (79.2) 617 (75.4) 5119 (79.4) 677 (81.1) 0.011

 Digoxin 696 ( 8.6) 55 (6.7) 578 (9) 63 (7.5) 0.051

 CCB 2430 (30.0) 252 (30.8) 1891 (29.3) 287 (34.4) 0.010

 OACs 2195 (27.1) 193 (23.6) 1799 (27.9) 203 (24.3) 0.005

 Insulin 5887 (72.7) 545 (66.6) 4545 (70.5) 797 (95.4)  < 0.001

Mortality, n (%)

 In-hospital 1028 (12.7) 152 (18.6) 795 (12.3) 81 (9.7)  < 0.001

 30-days 1335 (16.5) 178 (21.8) 1046 (16.2) 111 (13.3)  < 0.001

 1-year 2634 (32.5) 321 (39.2) 2068 (32.1) 245 (29.3)  < 0.001

Abbreviations: BMI Body mass index, MBP Mean blood pressure, SOFA Sequential organ failure assessment, COPD Chronic obstructive pulmonary disease, WBC White 
blood cell, BUN Blood urea nitrogen, ALT Alanine aminotransferase, PT Prothrombin time, ACEI/ARB Angiotensin converting enzyme inhibitors/angiotension receptor 
antagonists, CCB Calcium channel blocker, OACs oral anticoagulation medications
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0.74, 95% CI 0.59–0.94), and those without MI (HR 
0.73, 95% CI 0.58–0.92), T3 showed a lower mortality 
risk compared to T1. For 30-day and in-hospital mor-
tality, the associations with HGI were broadly similar 
to those for 1-year mortality, with no significant inter-
actions across subgroups (all P for interaction > 0.05). 
Higher HGI levels (T3) were linked to reduced 30-day 
mortality (HR 0.60, 95% CI 0.47–0.76) and in-hospital 
mortality (OR 0.44, 95% CI 0.32–0.60), with consistent 
effects across strata.

Sensitivity analysis
We conducted sensitivity analyses by separately exclud-
ing missing data, diagnosed sepsis, and diagnosed 

hepatic impairment, yielding 1-year mortality HRs for 
T2 and T3 of 0.82 and 0.71, 0.67 and 0.73, 0.86 and 0.80, 
respectively, consistent with the primary analysis. This 
suggests that data imputation, sepsis, and hepatic impair-
ment have limited impact, and the results remain robust 
(Fig. 5).

Discussion
This retrospective study, involving 8,098 critically ill HF 
patients from the MIMIC-IV database, represents one of 
the first comprehensive evaluations of the relationship 
between the HGI and mortality outcomes. In this large-
scale cohort study, the HGI showed a J-shaped correla-
tion with the first 1-year mortality risk after adjustment 

Fig. 2 Kaplan‒Meier analyses for different endpoints among the three group. Note: left, 1-year mortality; right, 30-day mortality

Table 2 Associations between HGI and in-hospital mortality in the Logistic regression model

Abbreviations: HGI Hemoglobin glycation index, OR Odds ratio, CI Confidence interval, HR Hazard ratio, Ref Reference

Stands for HGI were continuous variable per 1 unit

Model 1 adjusted for: none;

Model 2 adjusted for: covariates included in demographics;

Model 3 adjusted for: model 2 + covariates included in vital signs and comorbidities;

Model 4 adjusted for: model 3 + covariates included in laboratory tests and treatments

Model 1 Model 2 Model 3 Model 4
OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

HGI 0.91 (0.87~0.96) <0.001 0.91 (0.87~0.96) 0.001 0.85 (0.81~0.9) <0.001 0.88 (0.83~0.93) <0.001

HGI tertiles
 T1 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

 T2 0.62 (0.51~0.75) <0.001 0.56 (0.46~0.68) <0.001 0.54 (0.45~0.66) <0.001 0.66 (0.54~0.82) <0.001

 T3 0.47 (0.35~0.63) <0.001 0.47 (0.35~0.63) <0.001 0.37 (0.27~0.51) <0.001 0.44 (0.32~0.60) <0.001
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Table 3 Associations between HGI and 30-days, 1-year mortality in the Cox regression model

Abbreviations: HGI Hemoglobin glycation index, HR Hazard ratio, CI Confidence interval, Ref Reference

Stands for HGI index were continuous variable per 1 unit

Model 1 adjusted for: none;

Model 2 adjusted for: covariates included in demographics;

Model 3 adjusted for: model 2 + covariates included in vital signs and comorbidities;

Model 4 adjusted for: model 3 + covariates included in laboratory tests and treatments

Model 1 Model 2 Model 3 Model 3 Model 4

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value HR 
(95%CI)

P-value

30-day mortality

 HGI 0.93 
(0.89 ~ 0.97)

 < 0.001 0.94 
(0.90 ~ 0.98)

0.004 0.89 (0.85 ~ 0.93)  < 0.001 0.92 
(0.88 ~ 0.96)

 < 0.001

HGI tertiles
 T1 Ref Ref Ref Ref Ref Ref Ref Ref

 T2 0.71 
(0.61 ~ 0.84)

 < 0.001 0.63 
(0.54 ~ 0.74)

 < 0.001 0.62 (0.53 ~ 0.73)  < 0.001 0.75 
(0.64 ~ 0.88)

 < 0.001

 T3 0.57 
(0.45 ~ 0.73)

 < 0.001 0.59 
(0.47 ~ 0.75)

 < 0.001 0.49 (0.39 ~ 0.63)  < 0.001 0.60 
(0.47 ~ 0.76)

 < 0.001

1-year mortality

 HGI 0.96 
(0.94 ~ 0.99)

0.01 0.98 
(0.95 ~ 1.01)

0.211 0.93 (0.9 ~ 0.96)  < 0.001 0.97 
(0.94 ~ 1.00)

0.028

HGI tertiles
 T1 Ref Ref Ref Ref Ref Ref Ref Ref

 T2 0.77 
(0.68 ~ 0.87)

 < 0.001 0.68 
(0.61 ~ 0.77)

 < 0.001 0.67 (0.59 ~ 0.75)  < 0.001 0.82 
(0.73 ~ 0.92)

0.001

 T3 0.68 
(0.58 ~ 0.81)

 < 0.001 0.72 
(0.61 ~ 0.85)

 < 0.001 0.59 (0.5 ~ 0.71)  < 0.001 0.75 
(0.63 ~ 0.90)

0.001

Fig. 3 Dose–response relationship between the HGI and all-cause mortality in patients with heart failure. Note: Adjusted for covariates included 
in demographics, vital signs, comorbidities, laboratory tests and treatments. Solid and dashed lines indicate the predicted value and 95% CI. left, 
1-year mortality; right, 30-day mortality
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for covariates including age, gender, race, BMI, MI, AF, 
hypertension, diabetes, stroke, hemoglobin, creatinine, 
ACEI/ARB use, beta-blocker use, insulin use. The 1-year 
mortality risk increased as HGI decreased, with a more 
pronounced effect observed at lower HGI levels.

The ECS and ACC guidelines emphasize that a criti-
cal aspect of HF management is monitoring blood glu-
cose control [1, 15]. Traditionally, glucose metabolism 
has been assessed using FPG and HbA1c, which evalu-
ate short-term and long-term glycemic control, respec-
tively [16, 17]. However, HbA1c may not fully reflect 
individual variations, particularly when factors such as 
red blood cell lifespan, hemoglobin glycation ability, or 
genetic differences are present [18–20]. In such cases, 
the measured HbA1c may deviate from the theoretical 
value predicted by average blood glucose. Therefore, 
Hempe et al. first introduced the concept of the HGI by 

assessing the average blood glucose and HbA1c levels 
in 128 children and adolescents with type 1 diabetes 
[21]. The HGI quantifies this deviation by subtracting 
the HbA1c predicted from FPG-based linear regression 
from the observed HbA1c, thereby providing insight 
into individualized glycation patterns [9].

Multiple studies have confirmed that HGI is suitable 
for evaluating the incident risk and outcomes progno-
sis of various chronic diseases [9, 21–23], especially for 
DM-related complications, and could act as a predic-
tive indicator of intensive hypoglycemic-strategy-related 
adverse reactions [24]. Previous research on the relation-
ship between HGI and cardiovascular or all-cause mor-
tality has largely focused on the notion that a higher HGI 
is associated with a worse prognosis [25–27]. A study 
involving 2,934 individuals from a Chinese population 
found that HGI is associated with the incidence of stroke, 

Fig. 4 Forest plot of subgroup analysis for 1-year mortality. Abbreviations: OR, odd ratio; CI, confidence interval; BMI, body mass index; MI, 
myocardial infarction. Note: T1 as reference group. Adjusted for covariates included in demographics, vital signs, comorbidities, laboratory tests 
and treatments
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with a higher HGI linked to an increased risk of stroke 
[25]. Similarly, a randomized controlled trial focusing 
on diabetic patients demonstrated a strong association 
between high HGI and adverse cardiovascular events 
[26]. These studies linked high HGI to stroke and cardio-
vascular events in chronic populations, emphasizing gly-
cation and glucose variability over long-term follow-up, 
unlike our acute ICU-based HF cohort where low HGI 
predominates due to metabolic stress and malnutrition. 
Mechanistically, a high HGI often indicates that HbA1c 
significantly exceeds what can be explained by blood 
glucose levels alone [9]. This suggests that the patient 
may have a higher susceptibility to glycation, potentially 
accompanied by more persistent or fluctuating blood glu-
cose levels and an inflammatory state [27–29].

However, some researchers have also observed that 
low HGI may be associated with poor outcomes in cer-
tain populations [30–32]. For instance, in the REAC-
TION cohort, low HGI was associated with increased 
chronic cardiovascular event risk in a general population 
[30], while an analysis of 5,260 high-risk coronary artery 
disease patients from MIMIC showed higher long-term 
mortality with low HGI [31]. Similarly, Cheng et al. [33] 
reported in 1,531 acute decompensated heart failure 
ADHF patients that the lowest HGI tertile had higher all-
cause (28.2%) and cardiovascular mortality (17.1%) than 
the highest tertile. Our study aligns with these findings, 
demonstrating in 8,098 critically ill HF patients from 
MIMIC-IV that the lowest HGI tertile had elevated in-
hospital mortality (18.6%) compared to the highest, with 
greater disease severity (SOFA: 5.2 vs. 4.8) and malnu-
trition (albumin: 3.3  g/dL vs. 3.4  g/dL) in T1 (Table  1). 
Unlike the REACTION and MIMIC studies focusing on 

general populations or chronic outcomes, we targeted 
acute HF in ICU patients; compared to Cheng et al.’s neg-
ative linear trend, our J-shaped relationship underscores 
unique risks at extremely low HGI in critical care. These 
differences highlight HGI’s prognostic versatility across 
populations and HF severities.

The analysis in this study not only confirms a signifi-
cant association between HGI values and adverse out-
comes in heart failure patients, but also highlights the 
need for increased attention to patients with extremely 
low HGI levels. From a mechanistic perspective, a very 
low HGI may indicate significant metabolic disturbances 
or reduced red blood cell lifespan, which could lead to 
HbA1c inaccurately reflecting blood glucose control [34, 
35]. Additionally, stress hyperglycemia could also poten-
tially contribute to numerically high FPG and then low 
HGI [32]. Stress hyperglycemia may exist after onset of 
stroke and deteriorate the outcome of HF. In critically ill 
HF patients, this may be further influenced by factors such 
as increased inflammation, malnutrition, and multi-organ 
dysfunction, which together increase the risk of mortal-
ity [36, 37]. In our study, we also found that the low HGI 
group was often associated with lower BMI, lower blood 
glucose levels, hemoglobin levels, and albumin levels, as 
well as higher creatinine levels (Table  1). Similarly, our 
stratified analysis also showed that patients with comor-
bid diabetes, advanced age, or abnormal BMI exhibited 
differential survival outcomes at different HGI levels. This 
supports the notion raised in previous literature that HGI 
can be used to identify high-risk subgroups and assist in 
determining individualized treatment strategies.

In addition, we observed a higher proportion of Whites 
in the T2 group (68.2%) compared to T1 (65.8%) and T3 

Fig. 5 Sensitivity analysis for 1-year mortality. Abbreviations: HR, hazard ratio; CI, confidence interval; Ref., reference. Note: Adjusted for covariates 
included in demographics, vital signs, comorbidities, laboratory tests and treatments
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(57.1%) (Table 1, P < 0.001), aligning with its intermediate 
HGI range (−1.26 < HGI < 1.74) and mortality outcomes 
in our J-shaped association. This racial distribution may 
reflect genetic influences on HGI and heart failure prog-
nosis. Whites often exhibit lower HbA1c relative to glu-
cose levels, potentially due to polymorphisms in genes 
like G6PD, which modulates red cell oxidative stress, 
altering hemoglobin structure, and SLC4A1, affecting gly-
cation rates, all more prevalent in European ancestry [38].

Clinically, relying solely on HbA1c or short-term blood 
glucose levels may not fully assess the true metabolic 
status of critically ill patients [20]. Using HGI as a sup-
plementary measure can help identify potential high-risk 
groups that may be overlooked in routine glucose moni-
toring. It is recommended that HGI be integrated into 
routine assessments, especially for patients with fluctuat-
ing glucose levels, to optimize individualized treatment 
strategies and improve prognosis. Additionally, incorpo-
rating HGI into predictive models may enhance the accu-
racy of risk stratification, aiding in the early identification 
of metabolic imbalances and guiding timely interven-
tions to reduce complications. Regarding the findings of 
this study, clinicians should be particularly attentive to 
extreme cases: when HGI is markedly low, it is important 
to consider whether the patient has nutritional meta-
bolic issues, anemia, or other hidden risks. Furthermore, 
risk stratification based on HGI could be combined with 
other clinical scores (OASIS, SOFA, SAPS III) to provide 
additional decision support for the comprehensive man-
agement of critically ill heart failure patients.

Of course, this study has several limitations. First, as a 
retrospective single-center database study, although mul-
tiple confounding factors were adjusted for, potential bias 
cannot be completely eliminated. Second, the HGI was 
calculated only using admission or early data, which does 
not reflect the dynamic changes of HGI throughout the 
hospitalization or during long-term follow-up. Third, the 
impact of acute stress on FPG, HbA1c, and red blood cell 
metabolism cannot be ignored, especially in critically ill 
patients, where various interfering factors such as infec-
tions, inflammation, blood transfusions, and hormonal 
fluctuations may play a role. Finally, the study primarily 
focuses on all-cause mortality as the outcome, and lacks 
in-depth analysis of cardiovascular-specific mortality or 
other endpoints, such as readmission rates and complica-
tions. Future studies could further explore these aspects 
in larger populations or with longer follow-up periods.

Conclusion
In this large-scale retrospective study of critically ill 
heart failure patients from the MIMIC-IV database, 
we demonstrated that the HGI is significantly associ-
ated with all-cause mortality. Specifically, a J-shaped 

relationship was observed between HGI and mortality. 
Patients with extremely low HGI levels exhibited the 
highest risk, highlighting the potential impact of meta-
bolic disturbances, inflammation, or malnutrition on 
mortality in this population. HGI may serve as a valu-
able supplementary marker for risk stratification and 
prognosis in this population. Future studies are needed 
to validate these findings and explore the mechanisms 
linking HGI to mortality, as well as its potential role in 
guiding individualized treatment strategies.
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