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Abstract 

Background Physical frailty is highly prevalent in heart failure (HF), but we lack an understanding of the underly-
ing pathophysiology. Proteomic evaluation of plasma samples may elucidate potential mechanisms and biomarkers 
of physical frailty in HF.

Objectives We aimed to identify plasma proteomic biomarkers that are differentially expressed between physically 
frail and non-physically frail adults with HF.

Methods This was a secondary analysis of a subset of data and plasma samples from a study of frailty 
among patients with New York Heart Association (NYHA) Functional Classification I-IV HF. Physical frailty was meas-
ured using the Frailty Phenotype Criteria. Propensity score matching was used to match pairs of physically frail (n = 20) 
vs. non-physically frail (n = 20) patients on clinical characteristics. Plasma samples were processed using a sensitive 
liquid chromatography mass spectrometry platform, utilizing a multiplexed tandem mass tag-labeled quantitative 
proteomics approach. Differentially expressed proteins were quantified individually using paired t tests with associ-
ated log fold change of 0.3 and Fisher’s combined p values.

Results The sample (n = 40) was 62.8 ± 16.9 years old, 58% female, and 55% NYHA Class III/IV. Proteomic analysis 
revealed 7 proteins differentially expressed using full differential criteria: matrix metalloproteinase-14 was downregu-
lated in frailty, and copine-1, low affinity immunoglobulin gamma Fc region receptor III-A and III-B, probable non-
functional immunoglobulin kappa variable 2D-24, glutathione S-transferase Mu 1, and argininosuccinate lyase were 
upregulated in frailty.

Conclusions Proteomic biomarkers related to the immune system, stress response, and detoxification were differen-
tially expressed between physically frail and non-physically frail adults with HF.
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Introduction
Heart failure (HF) affects 6.7 million adults in the United 
States [1]. Approximately 1 out of every 2 adults with HF 
also experiences physical frailty [2], which is character-
ized as physiological decline across multiple systems, 
resulting in a phenotype of weight loss, weakness, slow-
ness, physical exhaustion, and low physical activity [3]. 
Physical frailty is linked with worse clinical and patient-
reported outcomes in HF [4, 5] and presents with nota-
ble sex differences [6, 7]. Despite the high prevalence 
and prognostic significance of physical frailty in HF, it 
is not known why it develops in some patients vs. oth-
ers. It is hypothesized that a combination of HF-related 
(e.g. hemodynamic instability) and non-HF-related (e.g. 
aging, comorbidities) factors contribute to physical frailty 
in HF through common biological mechanisms such as 
inflammation, sarcopenia, and skeletal muscle dysfunc-
tion [8, 9]. These relationships, however, are still not well 
understood, posing a major barrier to the development 
and deployment of effective interventions. Thus, there is 
a need to comprehensively characterize the pathophysiol-
ogy of physical frailty in HF to better understand mecha-
nisms and antecedents.

Proteomics, the large-scale evaluation of proteins in 
biological samples, has evolved technologically and can 
be used to identify and quantify proteins in complex bio-
logical mixtures such as plasma [10]. Blood circulating 
throughout the body is in direct contact with all organs 
of the body and contains information about overall physi-
ological milieu. Proteomics is appealing because it pro-
vides an unbiased proteome evaluation of these complex 
biological mixtures that, in turn, can be translated into 
the discovery of candidate biomarkers. For example, pro-
teomics has been used to identify novel biomarkers in 
human plasma that are associated with conditions such 
as HF [11] and frailty [12]. With the advances in prot-
eomics technologies and the need to further characterize 
the pathophysiology of physical frailty in HF, the pur-
pose of this paper was to perform a pilot discovery-based 
proteomic analysis of plasma samples to identify plasma 
proteomic biomarkers that are differentially expressed 
between physically frail and non-physically frail adults 
with HF.

Methods
Study design and sample
We performed a secondary analysis of a subset of data 
and plasma samples from an observational study of 
frailty among patients with New York Heart Association 
(NYHA) Functional Classification I-IV HF, as described 
previously [7]. The sample was comprised of patients 
with chronic stable HF enrolled from outpatient HF and 
general cardiology clinics at a single center who were 

enrolled between May 2018 and February 2020. Inclu-
sion criteria were age 21 years or older, ability to read 
and comprehend 5th grade English, and diagnosed with 
NYHA functional classification I-IV HF. Exclusion crite-
ria were documented major cognitive impairment (e.g., 
Alzheimer’s disease) or active psychosis that would pre-
clude study participation, prior heart transplantation 
or durable mechanical circulatory support, major and 
uncorrected hearing dysfunction, or were otherwise una-
ble to complete the requirements of the study (e.g., life-
threatening illness).

After enrollment into the study, participants were 
scheduled for a study visit at our laboratory where they 
provided a fasting blood sample and were assessed on 
physical frailty. For this study, we selected a subset of 
patients from the larger sample based on level of physi-
cal frailty and propensity scores (described in Statistical 
Analysis). Both the parent study and this secondary anal-
ysis were approved by the Institutional Review Board. 
Written informed consent was obtained from all partici-
pants, and the data reported on in this study only include 
those who consented to storing data and samples in a 
biorepository for future research.

Measurement
Sociodemographic and clinical data
Data on sociodemographics were collected using a soci-
odemographic questionnaire. We performed a medi-
cal record review to collect data on HF history, etiology, 
NYHA functional class, clinical and laboratory data, and 
treatment of HF. The Charlson Comorbidity Index [13] 
was used to summarize comorbid conditions.

Physical frailty
Physical frailty was measured using the Frailty Pheno-
type Criteria [3] with adaptations for the HF population 
[14]. We used the following five criteria: 1) uninten-
tional weight loss of > 10 pounds over the last year by 
self-report, 2) weakness of the lower extremities using 
5-repeat chair stands, 3) slowness with gait speed 
assessed over four meters, 4) physical exhaustion, and 5) 
reduced physical activity by asking how much time was 
spent exercising over the past week. After completing 
the measures for each of the five criteria, the scores were 
totaled (range zero to five). Each participant was then 
classified as either “non-physically frail” (i.e. zero to two 
criteria met) or “physically frail” (i.e. ≥ three criteria met).

Proteomic analysis
Whole blood was collected in EDTA tubes from partici-
pants after fasting for 8  h and abstaining from caffeine 
consumption and exercise prior to the blood draw. Blood 
samples were immediately placed on ice and transported 
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to the university Research Core Lab. Plasma was ali-
quoted and immediately stored at − 80 °C until process-
ing. Plasma samples were processed at Pacific Northwest 
National Laboratory (Richland, WA), as previously 
described [15] and as detailed in Supplemental File 1.

Statistical analysis
We generated propensity scores to identify the matched 
pairs of physically frail vs. non-physically frail patients 
with HF. Propensity score analysis is a method used 
to reduce comparative bias between non-randomized 
samples [16] and is designed to balance observational 
data such that baseline covariates are similar between 
“treated/exposed” and “non-treated/non-exposed” 
groups. In this case the “exposure” factor was physical 
frailty: physically frail (met three to five of the Frailty 
Phenotype Criteria) or non-physically frail (met zero 
to two of the Frailty Phenotype Criteria). We estimated 
the propensity scores by first selecting covariates based 
on significant variables identified in prior work, includ-
ing our own [7, 9, 14, 17]. Specifically, we identified the 
following covariates as potential significant contribu-
tors to physical frailty in HF: sex (male/female), age (< 65 
years/≥ 65 years), HF etiology (ischemic/non-ischemic), 
HF classification (HF with preserved vs. reduced ejection 
fraction), prescribed an angiotensin converting enzyme 
inhibitor or angiotensin receptor blocker or not, Charl-
son Comorbidity Index category (low vs. medium vs. 
high comorbidity burden), type 2 diabetes (presence vs. 
absence), and body mass index (obese vs. non-obese). 
Given the size of the sample from which this study is 
based (n = 115), we were limited to using dichotomous 
variables rather than continuous variables. A compari-
son of the generated propensity scores for physically frail 
vs. non-frail is presented in Supplemental Fig.  1. Using 
these propensity scores, we performed nearest neighbor 
matching based on a caliper of 0.25*standard deviation of 
the propensity scores. This generated 25 matched pairs. 
Each of the pairs was evaluated for propensity score value 
(closer to zero was better) and matching (≥ five out of 
eight criteria matched). Two pairs were removed because 
four out of eight criteria were mismatched, and two pairs 
with propensity score differences ≥ 0.40 were removed. 
Thus, n = 21 matched pairs were used for proteomic 
analysis. Post-matching comparisons between treated 
(frail) vs. non-treated (non-frail) showed no significant 
differences.

Following the proteomic experiments, one sample 
did not generate usable data, so the pair was removed, 
yielding a final sample of n = 20 matched pairs. Identi-
fied proteins were compared between frail and non-frail 
using two approaches. First, all the proteins were nor-
malized to the reference pool and median centered to 

total intensity, and then a paired t-test (because of the 
propensity matched samples) was used to compare the 
two groups. The paired t-test p-values and associated 
log fold changes for each of the identified proteins were 
then mapped to volcano plots. Additionally, each of the 
three plexes was analyzed separately where each protein 
was median centered to total intensity, and then a Fisher’s 
combined p-value of the three p-values was generated. 
We adjusted for false discovery rates using the Benja-
mini–Hochberg method; however, the sample size was 
too small to identify any significant proteins. Thus, given 
our exploratory approach, we chose to only focus on 
proteins that were significant by the volcano plot and in 
differential expression across all three plexes. Stata v.17 
(College Station, TX) and RStudio Version 4.0.3 [18] were 
used for analysis. Reactome Knowledgebase (http:// react 
ome. org) was used to map proteins to physiologic path-
ways [19]. GraphPad Prism 10.2 (GraphPad Software, 
San Diego, CA) and RStudio Version 4.0.3 were used to 
prepare figures.

Results
The sample (n = 40) was 62.8 ± 16.9 years old, over half 
female, and 80% Non-Hispanic White. The majority 
were non-ischemic etiology HF (73%) and NYHA Class 
III/IV (55%). The full sample characteristics, overall and 
by level of physical frailty, are presented in Table  1. By 
design with propensity score matching, no characteristics 
were significantly different. Among the non-frail group (n 
= 20), five did not meet any frailty criteria, six met one 
frailty criterion, and nine met two frailty criteria (i.e. 15 
were pre-frail). Among the frail group (n = 20), 14 met 
three frailty criteria and six met four frailty criteria. Dis-
tribution of frailty criteria met across both groups is pre-
sented in Fig. 1.

Proteins meeting full differential criteria
The proteomic analysis of plasma samples identified 
2684 proteins; of these, 67 proteins were significantly 
different between physically frail (n = 20) and non-phys-
ically frail (n = 20) patients using paired t-tests (Sup-
plemental Table  1). The log2 fold changes for each of 
the 2684 proteins were compared with the correspond-
ing -log10 p-values in a volcano plot depicted in Fig. 2. 
From this level of constraint, 27 proteins were signifi-
cantly different: 10 downregulated and 17 upregulated 
(Table  2). Of the downregulated proteins (i.e. down-
regulated with physical frailty), matrix metallopro-
teinase-14 (MMP14) was the only protein consistently 
downregulated across all three plexes. Of the upregu-
lated proteins (i.e. upregulated with physical frailty), six 
were consistently upregulated across all three plexes: 
copine-1 (CPNE1), low affinity immunoglobulin gamma 

http://reactome.org
http://reactome.org
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Fc region receptor III-A (FCG3 A), low affinity immu-
noglobulin gamma Fc region receptor III-B (FCG3B), 
probable non-functional immunoglobulin kappa vari-
able 2D-24 (KVD24), glutathione S-transferase Mu 1 
(GSTM1), and argininosuccinate lyase (ARLY).

Proteins meeting partial differential criteria
There were also other proteins not identified in the vol-
cano plot, but significantly different by paired t-test, 
Fisher’s test, and consistently up- or down-regu-
lated across all three plexes (Table  3). There were six 

Fig. 1 Frailty criteria met by group: non-frail and frail. Percentage of patients meeting each of the five physical frailty criteria within each frailty 
group. Abbreviations: PA, physical activity 

Table 1 Characteristics of the sample and by level of physical frailty

Data are presented as mean±standard deviation, median [interquartile range], or N (%). Abbreviations: BUN Blood urea nitrogen, EF Ejection fraction, SHFM Seattle Heart 
Failure Model
a Non-physically frail includes both non-frail and pre-frail

Total (n = 40) Non-Physically Frail 
(n = 20)a

Physically Frail (n = 20) p value

Patient Characteristics
 Age (years) 62.8 ± 16.9 65.4 ± 14.7 60.3 ± 18.8 0.351

 Female 23 (58%) 12 (60%) 11 (55%) 0.749

 Non-Hispanic White 32 (80%) 16 (80%) 16 (80%) 1.00

Clinical Characteristics
 Body mass index (kg/m2) 31.2 ± 6.6 31.1 ± 6.0 31.3 ± 7.4 0.933

 Charlson Comorbidity Index (weighted) 2.6 ± 1.8 2.9 ± 2.0 2.4 ± 1.5 0.378

 Stage 3 chronic kidney disease 10 (25%) 6 (30%) 4 (20%) 0.465

 Type 2 diabetes 16 (40%) 8 (40%) 8 (40%) 1.00

Heart Failure Characteristics
 Time with heart failure (years) 2.9 [0.9–6.2] 3.9 [1.7–9.4] 2.7 [0.8–5.1] 0.285

 New York Heart Association functional class III/IV 22 (55%) 11 (55%) 11 (55%) 1.00

 Non-ischemic etiology 29 (73%) 14 (70%) 15 (75%) 0.723

 Heart failure with reduced EF 28 (70%) 16 (80%) 12 (60%) 0.168

 Left ventricular ejection fraction (%) 41.0 ± 16.6 39.1 ± 17.1 42.9 ± 16.3 0.476

 Serum hemoglobin (g/dL) 12.8 ± 1.9 13.0 ± 1.7 12.6 ± 2.1 0.507

 Serum BUN:Creatinine ratio 21.0 ± 8.1 22.3 ± 9.2 19.8 ± 6.7 0.333

 Prescribed a β-blocker 34 (85%) 18 (90%) 16 (80%) 0.376

 Prescribed an angiotensin-converting enzyme-
inhibitor or angiotensin II receptor blocker

27 (68%) 16 (80%) 11 (55%) 0.091

 SHFM one year projected survival (%) 95.5 [91–97] 96 [92–98] 93.5 [88.5–97] 0.321
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additional down-regulated proteins beyond MMP14, 
which included: growth/differentiation factor 8, G patch 
domain-containing protein 1, dolichol-phosphate man-
nosyltransferase subunit 3, plasma protease C1 inhibitor, 
dynein regulatory complex protein 11, and insulin-like 
growth factor II. There were no other additional up-reg-
ulated proteins.

Proteins meeting a single differential criterion
In order to gain a better understanding of the pathways 
involved, there were 148 proteins significantly identified 
via Fisher’s test, and of these, 120 proteins were mapped 
to pathways (Supplemental Table 2). Proteins within the 
immune system pathway were the most common dif-
ferentially expressed markers in both up-regulated and 
down-regulated directions.

Discussion
In this propensity score matched discovery-based pilot 
study of physically frail vs. non-physically frail adults 
with HF, we found proteomic markers related to immune 
function, stress response, and detoxification were sig-
nificantly differentially expressed. Specifically, proteomic 
analysis revealed seven proteins that were differentially 
expressed using full differential criteria: MMP14 was 

downregulated with physical frailty, and CPNE1, FCG3 
A, FCG3B, KVD24, GSTM1, and ARLY were upregulated 
with physical frailty. There were also other expressed 
proteins that support the pathways of immune function 
and cellular stress. Simply put, patients with HF who are 
physically frail are in a state of chronic immune dysfunc-
tion (with both upregulated and downregulated immune 
markers), stress response upregulation, and dysfunc-
tional cellular activation. By identifying biomarkers asso-
ciated with a clinical assessment of physical frailty, we 
can begin to ascertain potential biological mechanisms to 
target with interventions.

Proteins related to the immune system were the most 
prominent markers identified, indicating a potential role 
of immune dysfunction and inflammation, which is one 
of most commonly identified frailty pathways [9, 20, 21]. 
Immunosenescence refers to age-related alterations in 
the immune system and may be a possible mechanism 
underlying physical frailty in HF [9]. Immunosenescence 
results from increased proinflammatory mediators in 
the absence of an obvious trigger, possibly induced by 
damaged cells, failure of dysfunctional neutrophils and 
macrophages to properly remove cellular debris, and 
a growing number of senescent cells secreting proin-
flammatory cytokines [22]. For example, in our study, 

Fig. 2 Volcano plot of identified proteins comparing log2 fold change vs. -log10 p-value. Out of 2684 proteins, 27 proteins were identified 
as significantly differentially expressed by log2 fold change and -log10 p-value, 10 proteins down-regulated and 17 proteins up-regulated. 
Abbreviations: FC, fold change 
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Table 2 Proteins significantly differentially expressed on volcano plot  (log2 fold change vs. -log10 p-value)

Bold indicates those proteins significant by the volcano plot and significantly up- or down-regulated across all three plexes

Protein Abbreviation Protein Name Paired 
t test 
p-value

log2 fold change Fisher’s p-value Detection patterns across plexes

Downregulated with Physical Frailty
 GPD1L Glycerol-3-phosphate dehydroge-

nase 1-like protein
 < 0.001 − 0.327 0.001 Detected in one plex

 KRCC Lysine-rich coiled-coil protein 1 0.021 − 0.605 0.020 Detected in one plex

 PIPNA Phosphatidylinositol transfer protein 
alpha isoform

0.023 − 0.408 0.015 Detected in one plex

 ATP68 ATP synthase subunit ATP5MJ, 
mitochondrial

0.030 − 0.394 0.053 Detected in one plex

 NVL Nuclear valosin-containing protein-
like

0.033 − 0.420 0.031 Detected in one plex

 CXL14 C-X-C motif chemokine 14 0.036 − 0.437 0.050 Detected in two plexes, same 
direction

 MMP14 Matrix metalloproteinase-14 0.037 − 0.303 0.170 Detected in three plexes, same 
direction

 VGF Neurosecretory protein VGF 0.037 − 0.309 0.089 Detected in two plexes, same 
direction

 PCS1 N ProSAAS 0.041 − 0.540 0.029 Detected in one plex

 SURF6 Surfeit locus protein 6 0.046 − 0.838 0.040 Detected in one plex

Upregulated with Physical Frailty
 CPNE1 Copine-1 0.002 0.418 0.025 Detected in three plexes, same 

direction
 FCG3B Low affinity immunoglobulin 

gamma Fc region receptor III-B
0.003 0.428 0.054 Detected in three plexes, same 

direction
 QSOX2 Sulfhydryl oxidase 2 0.003 0.321 0.005 Detected in three plexes; one plex 

had a different direction

 KVD24 Probable non-functional immu-
noglobulin kappa variable 2D- 24

0.006 0.348 0.048 Detected in three plexes, same 
direction

 CC185 Coiled-coil domain-containing 
protein 185

0.011 0.374 0.044 Detected in one plex

 TMOD3 Tropomodulin-3 0.013 0.307 0.028 Detected in one plex

 GSTM1 Glutathione S-transferase Mu 1 0.016 0.632 0.003 Detected in three plexes, same 
direction

 SYTL4 Synaptotagmin-like protein 4 0.025 0.383 0.023 Detected in one plex

 PP1 F Peptidyl-prolyl cis–trans isomerase 
F, mitochondrial

0.028 0.349 0.014 Detected in one plex

 IGJ Immunoglobulin J chain 0.030 0.394  < 0.050 Detected in three plexes; one plex 
had a different direction

 KV240 Immunoglobulin kappa variable 
2–40

0.030 0.930 0.016 Detected in one plex

 ARLY Argininosuccinate lyase 0.035 0.494 0.171 Detected in three plexes, same 
direction

 DQA2 HLA class II histocompatibility 
antigen, DQ alpha 2 chain

0.036 0.644 0.026 Detected in one plex

 OTC Ornithine transcarbamylase, mito-
chondrial

0.042 0.599 0.104 Detected in two plexes, same 
direction

 ADH4 All-trans-retinol dehydrogenase 
[NAD(+)] ADH4

0.043 0.412 0.063 Detected in two plexes; oppo-
site direction

FCG3 A Low affinity immunoglobulin 
gamma Fc region receptor III-A

0.044 0.524 0.048 Detected in three plexes, same 
direction

 GABR2 Gamma-aminobutyric acid type B 
receptor subunit 2

0.046 0.354 0.105 Detected in one plex
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CPNE1 was upregulated with physical frailty. CPNE1 is 
a widely expressed membrane-bound protein that may be 
involved in the development and progression of cancer 
[23]. Recently, it has been proposed that CPNE1 could 
be involved in sarcopenia and myogenesis [24]. Moreo-
ver, despite depletion of the larger IgG components, the 
consistent upregulation of the immunoglobulin proteins 
(e.g. FCG3A, FCG3B, and KVD24) with physical frailty is 
notable.

Additionally, stress response and dysfunctional cel-
lular activation and detoxification appear to be other 
contributing mechanisms. For example, GSTM1 was 
upregulated with physical frailty; GSTM1 is related to 
stress response, in addition to various other immune 
functions, and may play a role in cachexia [25]. There 
also appears to be a downregulation in cellular activa-
tion and detoxification. MMP14, which was consistently 
downregulated, is an endopeptidase that degrades com-
ponents of the extracellular matrix (e.g. collagen). Matrix 
metalloproteinases play an important role in the progres-
sion of cardiovascular disease [26], and in turn may influ-
ence the development of physical frailty as well. There 
were other proteins that were downregulated across two 
plexes that also support a dysfunctional cellular activ-
ity and response. For example, C-X-C motif chemokine 
14 and neurosecretory protein VGF, which are similar to 
MMP14, are involved in cellular activity and response. 
Downregulation of growth differentiation factor 8 and 
insulin-like growth factor 2 also seems to support the 
reduction in growth and activity related to physical 
frailty, similar to other studies [27, 28].

While there is no universal biomarker of frailty, previ-
ous studies using proteomics have identified potential 
biomarkers of frailty [12] such as vascular biomarkers 
[29], inflammatory glycoproteins [30], and markers of 
skeletal muscle derangements [31]. Liu et  al. examined 
plasma proteins from two large cardiovascular stud-
ies in association with pre-frailty and frailty, and they 
found that higher levels of growth differentiation factor 
15, transgelin, and insulin-like growth factor-binding 
protein 2 and lower levels of growth hormone receptor 
were associated with higher odds of prefrailty and frailty. 
[27] Given that inflammation, vascular dysfunction, and 
skeletal muscle dysfunction are common processes in HF, 
it is likely that these could provide the substrates for the 
development and/or exacerbation of physical frailty in 
HF. Indeed, we previously showed that markers of catab-
olism (i.e. insulin-like growth factor 1), adipose tissue 
dysfunction (i.e. adiponectin), and skeletal muscle dys-
function (i.e. myostatin) are linked with physical frailty in 
HF using a targeted protein approach [32].

With these common biological processes, there is con-
siderable overlap in the presentation of HF and physical 
frailty, which makes it difficult to distinguish cause and 
effect and, in turn, appropriate management strategies. 
For example, HF has many overlapping symptoms with 
physical frailty (e.g. fatigue and dyspnea), and physical 
frailty in HF exacerbates the need for assistance with 
activities of daily living. Additionally, a major knowl-
edge gap exists in determining the point at which physi-
cal frailty in HF becomes reversible or irreversible. Thus, 
there is a need to distinguish HF-related physical limita-
tions, which perhaps could be reversed with ventricular 

Table 3 Proteins consistently differentially expressed across all three plexes

Protein Abbreviation Protein Name Paired t test 
p-value

log2 fold change Fisher’s p-value

Downregulated
 GDF8 Growth/differentiation factor 8 0.004 − 0.209 0.017

 GPTC1 G patch domain-containing protein 1 0.006 − 0.236 0.026

 DPM3 Dolichol-phosphate mannosyltransferase subunit 3 0.007 − 0.218 0.016

 IC1 Plasma protease C1 inhibitor 0.015 − 0.149 0.039

 DRC11 Dynein regulatory complex protein 11 0.018 − 0.211 0.009

 IGF2 Insulin-like growth factor II 0.030 − 0.228 0.045

 MMP14 Matrix metalloproteinase- 14 0.037 − 0.303 0.170

Upregulated
 CPNE1 Copine- 1 0.002 0.418 0.025

 FCG3B Low affinity immunoglobulin gamma Fc region receptor III-B 0.003 0.428 0.054

 KVD24 Probable non-functional immunoglobulin kappa variable 2D- 24 0.006 0.348 0.048

 GSTM1 Glutathione S-transferase Mu 1 0.016 0.632 0.003

 ARLY Argininosuccinate lyase 0.035 0.494 0.171

 FCG3 A Low affinity immunoglobulin gamma Fc region receptor III-A 0.044 0.524 0.048
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assist device implantation or transplantation, versus 
the point at which the body is in an end-stage catabolic 
state. Our findings provide a biological profile of physi-
cal frailty in HF, which might elucidate mechanisms that 
are responsive to HF management, both pharmacologi-
cally and non-pharmacologically. Additionally, given the 
overlap of physical frailty with other related concepts 
(e.g. cognitive dysfunction, nutritional deficiencies) [33], 
these biomarkers might also facilitate our biological 
understanding of these aspects. In sum, these exploratory 
results are initial steps towards identifying a biomarker 
or biomarker panel that can be used in clinical settings 
to 1) develop personalized frailty interventions based on 
the biological profile and 2) track biological response to 
interventions.

There are several limitations to this study. First, our 
sample was small, and it was difficult for the quantita-
tive identifications to pass a multiple testing threshold, 
including adjusting for false discovery rate. However, the 
directionality of the results are fairly consistent and bio-
logically relevant and serve as a starting point for future 
research. Second, while our sample was over half female, 
we were unable to identify sex-specific markers of physi-
cal frailty given the small sample and the focus on frail vs. 
non-frail. Third, given the small numbers of participants 
who did not meet any frailty criteria in the parent study, 
we had to combine non-frail with pre-frail, as previously 
described [7]. Thus, we were unable to examine the three 
categories of frailty by the original Frailty Phenotype Cri-
teria: non-frail, pre-frail, and frail [3]. Finally, while we 
used propensity scores to create matched pairs of frail vs. 
non-frail, there is the possibility of other influential fac-
tors not measured in our study, including other markers 
and comorbidities (e.g. prealbumin, kidney dysfunction).

There is a significant need for future research based on 
our findings. First and most importantly, validation stud-
ies should be performed in independent, larger samples 
to confirm or refute the proteomic biomarkers identi-
fied in this discovery-based analysis. Sample sizes of n > 
200 (assuming equal groups of frail vs. non-frail) would 
provide 80% power to detect moderate effect sizes while 
adjusting for multiple comparisons. Moving forward for 
larger scale validation, more targeted mass spectrometry 
approaches (e.g. selective reaction monitoring) can be 
used to address potential variability across discovery plat-
forms and analysis timelines. Current technologies ena-
ble a wide range of targets, up to several hundred, to be 
included, so any potential protein target identified, such 
as those in the current study, can easily be incorporated 
and quantitatively standardized for larger scale valida-
tion. Second, since causal mechanisms cannot be inferred 
from this cross-sectional study, longitudinal studies are 
needed to track causal pathways, including determining 

if these identified proteins are causing frailty or are the 
effects of frailty. Finally, any future clinical applications 
will need to address standardization of proteomic analy-
sis alongside cost effectiveness considerations, keeping 
implementation science principles in mind.

Conclusion
Proteomic biomarkers related to the immune system, 
stress response, and cellular detoxification and activa-
tion were differentially expressed between physically frail 
and non-physically frail adults with HF. Patients with HF 
who are frail are in a state of chronic immune and stress 
response upregulation coupled with downregulation of 
cellular activation. Future work is needed to better deter-
mine the biological fingerprint of physical frailty in HF, 
which will likely help drive management strategies.

Abbreviations
ARLY  Argininosuccinate lyase
CPNE1  Copine-1
GSTM1  Glutathione S-transferase Mu 1
FCG3 A  Low affinity immunoglobulin gamma Fc region receptor III-A
FCG3B  Low affinity immunoglobulin gamma Fc region receptor III-B
HF  Heart failure
KVD24  Probable non-functional immunoglobulin kappa variable 2D-24
MMP14  Matrix metalloproteinase-14
NYHA  New York Heart Association

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12872- 025- 04725-5.

Supplementary Material 1. Proteomic Analysis Methods.

Supplementary Material 2. Histograms of estimated propensity scores by 
frailty group: non-frial and frail.

Supplementary Material 3.

Acknowledgements
None.

Authors’ contributions
Q.E.D. conceived and designed the study, collected the data and plasma sam-
ples, led the statistical analysis, and led the development of the manuscript. 
N.V.P. and M.R.D. performed statistical analyses and prepared figures. C.S.L. 
provided expert consultation on the statistical analyses and substantive feed-
back on the interpretation of findings. J.M.J., S.M.P., and M.G. performed the 
proteomic experiments, prepared the data for analyses, performed statistical 
analyses, and provided substantive feedback on the interpretation of the find-
ings. S.M.J. provided expert review on the content and clinical interpretation 
of the findings. B.A.H. provided senior guidance on all aspects of the project 
from conception to interpretation. All authors read and approved the final 
manuscript.

Funding
Data reported in this paper were generated from studies funded by the Office 
of Research on Women’s Health and the Eunice Kennedy Shriver National 
Institute of Child Health & Human Development of the NIH (K12HD043488) 
and the Medical Research Foundation New Investigator Grant. Support was 
also provided by the National Heart Lung and Blood Institute of the NIH 
(R01HL146833). The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the NIH.

https://doi.org/10.1186/s12872-025-04725-5
https://doi.org/10.1186/s12872-025-04725-5


Page 9 of 9Denfeld et al. BMC Cardiovascular Disorders          (2025) 25:284  

Data availability
Partial data are provided within the supplementary information files, and the 
full dataset is available upon reasonable request to the corresponding author.

Declarations

Ethics approval and consent to participate
The Oregon Health & Science University Institutional Review Board approved 
this study (IRB #17785 and #21950). All participants gave written informed 
consent to participate in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 School of Nursing, Oregon Health & Science University School of Nursing, 
3455, S.W. U.S. Veterans Hospital Road, Portland, OR 97239 - 2941, USA. 2 Knight 
Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 
USA. 3 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 
4 William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, USA. 
5 Earth and Biological Sciences Division, Pacific Northwest National Labora-
tory, Richland, WA, USA. 6 Thomas Jefferson University, Philadelphia, PA, USA. 
7 Department of Chemical Physiology and Biochemistry, School of Medicine, 
Oregon Health & Science University, Portland, OR, USA. 

Received: 22 November 2024   Accepted: 1 April 2025

References
 1. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart Disease and Stroke 

Statistics: A Report of US and Global Data From the American Heart 
Association. Circulation. 2024;149(8):e347–913.

 2. Denfeld QE, Winters-Stone K, Mudd JO, Gelow JM, Kurdi S, Lee CS. The 
prevalence of frailty in heart failure: A systematic review and meta-analy-
sis. Int J Cardiol. 2017;236:283–9.

 3. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: Evidence for a 
phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146-156.

 4. Yang X, Lupon J, Vidan MT, et al. Impact of Frailty on Mortality and 
Hospitalization in Chronic Heart Failure: A Systematic Review and Meta-
Analysis. J Am Heart Assoc. 2018;7(23): e008251.

 5. Denfeld QE, Winters-Stone K, Mudd JO, Hiatt SO, Lee CS. Identifying 
a relationship between physical frailty and heart failure symptoms. J 
Cardiovasc Nurs. 2018;33(1):E1–7.

 6. Archer SH, Lee CS, Gupta N, et al. Sex differences in the impact of physical 
frailty on outcomes in heart failure. Heart Lung. 2023;61:66–71.

 7. Denfeld QE, Habecker BA, Camacho SA, et al. Characterizing sex dif-
ferences in physical frailty phenotypes in heart failure. Circ Heart Fail. 
2021;14(9):926–36.

 8. Afilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovas-
cular care of older adults. J Am Coll Cardiol. 2014;63(8):747–62.

 9. Bellumkonda L, Tyrrell D, Hummel SL, Goldstein DR. Pathophysiology 
of heart failure and frailty: A common inflammatory origin? Aging Cell. 
2017;16(3):444–50.

 10. Lindsey ML, Mayr M, Gomes AV, et al. Transformative impact of proteom-
ics on cardiovascular health and disease: A scientific statement from the 
American Heart Association. Circulation. 2015;132(9):852–72.

 11. Gabisonia K, Burjanadze G, Woitek F, et al. Proteome Dynamics and Bio-
informatics Reveal Major Alterations in the Turnover Rate of Functionally 
Related Cardiac and Plasma Proteins in a Dog Model of Congestive Heart 
Failure. J Card Fail. 2022;28(4):588–600.

 12. Danese E, Montagnana M, Lippi G. Proteomics and frailty: a clinical over-
view. Expert Rev Proteomics. 2018;15(8):657–64.

 13. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classify-
ing prognostic comorbidity in longitudinal studies: Development and 
validation. J Chronic Dis. 1987;40(5):373–83.

 14. Denfeld QE, Winters-Stone K, Mudd JO, Hiatt SO, Chien CV, Lee CS. Fre-
quency of and significance of physical frailty in patients with heart failure. 
Am J Cardiol. 2017;119(8):1243–9.

 15. Argemi J, Kedia K, Gritsenko MA, et al. Integrated Transcriptomic and 
Proteomic Analysis Identifies Plasma Biomarkers of Hepatocellular Failure 
in Alcohol-Associated Hepatitis. Am J Pathol. 2022;192(12):1658–69.

 16. Moons P. Propensity weighting: How to minimise comparative bias in 
non-randomised studies? Eur J Cardiovasc Nurs. 2020;19(1):83–8.

 17. Pandey A, Kitzman D, Reeves G. Frailty is intertwined with heart failure: 
Mechanisms, prevalence, prognosis, assessment, and management. JACC 
Heart failure. 2019;7(12):1001–11.

 18. R Core Team. R: A language and environment for statistical computing 
[Software]. Vienna: R Foundation for Statistical Computing; 2023.

 19. Milacic M, Beavers D, Conley P, et al. The Reactome Pathway Knowledge-
base 2024. Nucleic Acids Res. 2024;52(D1):D672-d678.

 20. Barzilay JI, Blaum C, Moore T, et al. Insulin resistance and inflammation as 
precursors of frailty: The Cardiovascular Health Study. Arch Intern Med. 
2007;167(7):635–41.

 21. Ho YY, Matteini AM, Beamer B, et al. Exploring biologically relevant path-
ways in frailty. J Gerontol A Biol Sci Med Sci. 2011;66 A(9):975–9.

 22. Alberro A, Iribarren-Lopez A, Sáenz-Cuesta M, Matheu A, Vergara I, Otae-
gui D. Inflammaging markers characteristic of advanced age show similar 
levels with frailty and dependency. Sci Rep. 2021;11(1):4358.

 23. Tang H, Pang P, Qin Z, et al. The CPNE Family and Their Role in Cancers. 
Front Genet. 2021;12: 689097.

 24. Chen L, Pan L, Zeng Y, Zhu X, You L. CPNE1 regulates myogenesis through 
the PERK-eIF2α pathway mediated by endoplasmic reticulum stress. Cell 
Tissue Res. 2023;391(3):545–60.

 25. Yamada M, Warabi E, Oishi H, Lira VA, Okutsu M. Muscle p62 stimulates 
the expression of antioxidant proteins alleviating cancer cachexia. Physi-
ology. 2024;39(S1):2481.

 26. Kaminski AR, Moore ET, Daseke MJ 2nd, Valerio FM, Flynn ER, Lindsey 
ML. The compendium of matrix metalloproteinase expression in the left 
ventricle of mice following myocardial infarction. Am J Physiol Heart Circ 
Physiol. 2020;318(3):H706–14.

 27. Liu F, Austin TR, Schrack JA, et al. Late-life plasma proteins associated 
with prevalent and incident frailty: A proteomic analysis. Aging Cell. 
2023;22(11): e13975.

 28. Doi T, Makizako H, Tsutsumimoto K, et al. Association between insulin-like 
growth factor-1 and frailty among older adults. J Nutr Health Aging. 
2018;22(1):68–72.

 29. Lin CH, Liao CC, Huang CH, et al. Proteomics analysis to identify and 
characterize the biomarkers and physical activities of non-frail and frail 
older adults. Int J Med Sci. 2017;14(3):231–9.

 30. Darvin K, Randolph A, Ovalles S, et al. Plasma protein biomarkers of 
the geriatric syndrome of frailty. J Gerontol A Biol Sci Med Sci. 2014;69 
A(2):182–6.

 31. Ubaida-Mohien C, Lyashkov A, Gonzalez-Freire M, et al. Discovery pro-
teomics in aging human skeletal muscle finds change in spliceosome, 
immunity, proteostasis and mitochondria. eLife. 2019;8:e49874.

 32. Denfeld QE, Purnell JQ, Lee CS, et al. Candidate biomarkers of physical 
frailty in heart failure: an exploratory cross-sectional study. Eur J Cardio-
vasc Nurs. 2023;22(2):149–57.

 33. Denfeld QE, Jha SR, Fung E, et al. Assessing and managing frailty in 
advanced heart failure: An International Society for Heart and Lung 
Transplantation consensus statement. J Heart Lung Transplant. 
2024;43(1):1–27.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Plasma proteomic biomarkers of physical frailty in heart failure: a propensity score matched discovery-based pilot study
	Abstract 
	Background 
	Objectives 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Study design and sample
	Measurement
	Sociodemographic and clinical data
	Physical frailty

	Proteomic analysis
	Statistical analysis

	Results
	Proteins meeting full differential criteria
	Proteins meeting partial differential criteria
	Proteins meeting a single differential criterion

	Discussion
	Conclusion
	Acknowledgements
	References


