
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  
v e c  o m m  o n s .  o r  g / l  i c e  n s e s  / b  y - n c - n d / 4 . 0 /.

Chang et al. BMC Cardiovascular Disorders          (2025) 25:335 
https://doi.org/10.1186/s12872-025-04728-2

BMC Cardiovascular Disorders

*Correspondence:
Lihong Fan
lhfan@xjtu.edu.cn

1School of Electrical Engineering, Xi’an Jiaotong University, Xi’an  
710049, China
2The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an  
710061, China

Abstract
Background The risk stratification and prognosis of cardiac arrhythmia depend on the individual condition of 
patients, while invasive diagnostic methods may be risky to patient health, and current non-invasive diagnostic 
methods are applicable to few disease types without sensitivity and specificity. Cardiac electrophysiologic imaging 
(ECGI) technology reflects cardiac activities accurately and non-invasively, which is of great significance for the 
diagnosis and treatment of cardiac diseases. This paper aims to provide a new solution for the realization of ECGI by 
combining simulation model and deep learning methods.

Methods A complete three-dimensional bidomain cardiac electrophysiologic activity model was constructed, and 
simulated electrocardiogram data were obtained as training samples. Particle swarm optimization-back propagation 
neural network, convolutional neural network, and long short-term memory network were used respectively to 
reconstruct the cardiac surface potential.

Results The correlation coefficients between the simulation results and the clinical data range from 75.76 to 84.61%. 
The P waves, PR intervals, QRS complex, and T waves in the simulated waveforms were within the normal clinical 
range, and the distribution trend of the simulated body surface potential mapping was consistent with the clinical 
data. The coefficient of determination R2 between the reconstruction results of all the algorithms and the true value is 
above 0.80, and the mean absolute error is below 2.1 mV, among which the R2 of long short-term memory network is 
about 0.99 and the mean absolute error about 0.5 mV.

Conclusions The electrophysiologic model constructed in this study can reflect cardiac electrical activity, and 
contains the mapping relationship between the cardiac potential and the body surface potential. In cardiac potential 
reconstruction, long short-term memory network has significant advantages over other algorithms.

Clinical trial number Not applicable.
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Introduction
Arrhythmias are abnormal heart rhythms caused by 
disorders of the origin and conduction of cardiac activ-
ity, which can lead to sudden death, heart failure, and 
other serious complications. Due to the complexity of 
risk stratification and prognostic evaluation of cardiac 
arrhythmias, treatment strategies have to be determined 
based on the individual condition of patients [1].

The current diagnostic modalities for arrhythmia 
mainly include invasive and non-invasive diagnostic 
methods [2]. Invasive diagnostic methods can accu-
rately determine the type of arrhythmia and localize 
the foci. Common invasive examinations include endo-
cardial labeling, epicardial labeling, and intracavitary 
electrocardiography [3]. Non-invasive methods include 
cardiac imaging and electrocardiogram (ECG). The 
former method is more accurate in the diagnosis of 
ischemic diseases (e.g., atherosclerotic obstruction or 
stenosis of the coronary arteries), but is not applicable to 
other types of cardiac diseases due to certain limitations 
[4]. ECG can reflect the state of cardiac function in real 
time to predict and support the diagnosis of cardiovas-
cular diseases. However, the use of fewer lead signals can 
only provide localized information about cardiac electri-
cal activity, necessitating a higher level of expertise from 
physicians [5].

In recent years, some scholars have proposed cardiac 
electrocardiographic imaging (ECGI) technology [6–8]. 
ECGI can reconstruct cardiac potentials by body surface 
potential mapping (BSPM) to visualize the propagation 
of cardiac electrical activity. In comparison to invasive 
methods, ECGI offers a noninvasive means of reflecting 
cardiac electrophysiological activity. It allows for efficient 
and safe screening and identification of patients at high 
risk for arrhythmias and sudden cardiac death, as well 
as for localizing arrhythmogenic foci. This is particularly 
valuable for guiding pre-procedure diagnoses and cath-
eter ablation procedures.

ECGI relies on sufficient data from body surface lead 
signals and cardiac surface potentials to establish the 
mapping relationship between the body surface and 
the heart. Multi-lead ECG systems (the number of 
leads ≥ 64), due to their limited use in clinical prac-
tice, rarely provide sufficient data to directly construct a 
comprehensive database of real lead signals and cardiac 
surface potentials. Obtaining real cardiac potential data 
generally requires surgical implantation of cardiac elec-
trodes or catheterization, which is high risk and requires 
ethical review, hence difficult for clinical application. 
Consequently, research efforts have concentrated on 
obtaining simulated lead signals and cardiac potentials 
using simulation models [9], which is referred to as the 
ECG forward problem. These simulated data are then 
employed to establish mapping relationships through 

regularization methods, as well as machine learning and 
deep learning techniques [10, 11], a process known as the 
ECG inverse problem.

The ECG forward problem involves deriving the body 
surface potential distribution based on the potential dis-
tribution and dynamics of the cardiac sources. To accu-
rately solve this problem, it is essential to construct a 
precise representation of the internal cardiac sources 
and to define the volume conductor, which includes the 
visceral organs and the torso. Accurate simulation of 
human cardiac activity can be used to predict the effects 
of medical interventions and provide a viable alternative 
to animal experiments. The results obtained by simu-
lation are close to the real measured signals and can be 
used as an expansion of the ECG inverse problem data-
set. For example, Alday et al. [12]. constructed a complete 
human torso model containing internal organs and spinal 
cord based on human magnetic resonance imaging (MRI) 
images, and inserted the atrial model into the torso 
model to calculate the distribution of BSPM. Biasi et al. 
[13]. proposed a new finite-difference method and con-
structed a three-dimensional (3D) structure of the left 
ventricle of a specific patient based on medical images for 
simulating cardiac defibrillation. However, the aforemen-
tioned models represent only partial structures of the 
heart, focusing on either the atria or the ventricles, and 
do not encompass the complete conduction system. Cur-
rently, the state-of-the-art in cardiac modeling computa-
tion and simulation is individualized, patient-specific or 
pathology-specific human cardiac model. These models, 
although very detailed, are still limited to being ventric-
ular-only [14] or atrial-only [15] models and require sig-
nificant computational time as well as high-performance 
software and computers.

The ECG inverse problem aims to extract the relevant 
parameters of the cardiac source from ECG signals, and 
construct the cardiac source by comprehensively analyz-
ing the distribution and variations of BSPM, ultimately 
enabling visualization of the entire cardiac potential. 
Fundamentally, the ECG inverse problem is a data regres-
sion problem of body surface potentials and cardiac 
potentials [16]. Most traditional solution methods rely 
on regularization techniques to address the ill-posed 
nature of the ECG inverse problem, but it is extremely 
challenging to choose the parameters of these methods 
[17]. Deep learning outperforms traditional regulariza-
tion methods in solving inverse problems [18], primarily 
due to its ability to automatically learn complex data fea-
tures and mapping relationships, thereby better adapting 
to diverse inverse problem scenarios. Through end-to-
end learning with large-scale training data, deep learning 
models exhibit stronger generalization capabilities and 
optimization efficiency, enabling rapid convergence to 
more accurate solutions. Moreover, the flexible design of 
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deep learning network architectures allows for superior 
performance in handling complex textures and details.

In this study, a simplified 3D bidomain electrical activ-
ity model was developed to simulate the propagation of 
cardiac electrical activity. Simulated body surface lead 
signals and cardiac surface potentials were generated to 
create a training dataset for the neural network model. 
The simulation results were then compared with clini-
cal data to validate the model’s accuracy. Based on the 
simulated data of the electrophysiological model, par-
ticle swarm optimization-back propagation neural net-
work (PSO-BP), convolutional neural network (CNN), 
and long short-term memory network (LSTM) were 
employed respectively to solve the ECG inverse problem 
and reconstruct cardiac surface potentials. The experi-
mental findings were subsequently validated against clin-
ical data.

Methods
Model construction
The heart-torso bidomain model constructed in this 
study is an adaptation of the heart model based on the 
idealized 3D model of Sovilj et al. [19]. The whole model 
is shown in Fig. 1, which includes a simplified 3D struc-
ture of the torso, lungs, and the whole heart (including 
atria, ventricles, blood chambers, and cardiac fibrous 
skeleton). The shape and size of the heart in this model 
are similar to the Visible Human Project gallery of the 
real human anatomy [20]. The simplified 3D bidomain 
heart model was simulated using COMSOL Multiphys-
ics (COMSOL AB, Switzerland, v6.0) finite element soft-
ware. COMSOL allows for the independent import of 
geometric models, enabling the integration of heart mod-
els based on human anatomy for personalized simulation 
in future studies.

Standard 12-lead (referenced to the Wilson lead sys-
tem) and body surface 64-lead were placed on the torso 
surface. Standard and augmented lead signals were 
obtained from 4 electrodes (VR, VL, VF, VGND) at the 
limbs, and precordial lead signals were obtained from 
6 electrodes (V1-V6) on the anterior chest wall. In addi-
tion, 64-lead electrodes were placed on the front and 
back side of the torso to obtain body surface potentials. 
The arrangement consists of 32 electrodes on both the 
front and back surfaces (V64_i, where i represents the lead 
number ranging from 1 to 64), as indicated by the dark 
gray dots in Fig. 1a. The standard 12-lead ECG is defined 
in accordance with the literature [19], and 64-lead signals 
are the difference between the lead electrode potentials 
and Wilson central terminal.

Considering the volume conductor effect, the con-
ductivity and permittivity of each model component are 
assigned in accordance with the actual measured values 
of human tissues [21]. For the volume conductor region, 
the extracellular voltage V is controlled by the Laplace 
Eq. 

 ∇ · (−σ 0∇ V ) = 0 (1)

where σ 0 is the conductivity of torso, lungs, blood 
chambers, and fibrous skeleton. The values of conductiv-
ity and permittivity of each model subdomain are given 
in Table 1.

The cardiac model is divided into seven regions based 
on cellular properties and tissue conductivity: sinoatrial 
node (SAN), atria, atrioventricular node (AVN), His 
bundle, bundle branches (BNL), Purkinje fibers, and ven-
tricles. The ventricles and atria are separated by fibrous 
skeleton and only connected by the AVN.

Cardiac electrical activity is characterized by the modi-
fied FitzHugh-Nagumo model [22], which utilizes three 

Fig. 1 3D geometry of the heart-torso model. 1 = torso, 2 = lungs, 3 = heart. (a) Frontal view. (b) Top view
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dependent variables to depict the cardiac cell activa-
tion process at the cellular level: Ve for the extracellular 
potential, Vi for the intracellular potential, and u for the 
recovery variable that reflects the refractory period. The 
formula is given in Eq. (2) and Eq. (3).

 

∂ Ve

∂ t − ∂ Vi

∂ t + ∇ · (−σ e∇ Ve) = iion,l
∂ Vi

∂ t − ∂ Ve

∂ t + ∇ · (−σ i∇ Vi) = −iion,l

∂ u
∂ t = ke

[
(Vm−B)

A − du − b
]  (2)

 

iion,1 = kc1 (Vm − B)
(
a − Vm−B

A

) (
1 − Vm−B

A

)
+ kc2u

iion,2 = kc1 (Vm − B)
(
a − Vm−B

A

) (
1 − Vm−B

A

)
+ kc2u (Vm − B)

 (3)

where σ e and σ i are the extracellular and intracel-
lular conductivity, respectively. Vm = Vi − Ve is the 
transmembrane potential (TMP). a, A and B are used 
to control the threshold of the cellular action potential. 
c1, c2 and k are the unit conversion factor. b, d and e 
are used to regulate the rate of change of the recovery 
variable, reflecting the duration of the cellular action 
potential. iion,l is the membrane ion flow, where l = 1 
represents the membrane ion flow in the SAN, and l = 2 
represents other regions.

The region-specific parameters for each region are 
given in Table  2 to reflect electrophysiological differ-
ences. These parameters are based on the work presented 
in the literature [19] and have been adjusted accordingly 
to fit the present simulation model. For example, the 

values of a and b in the SAN differ from those in other 
regions, reflecting its unique function in the autonomous 
generation of electrical activation. This characteristic is 
also evident in the action potential thresholds A and B, 
which are unique to the SAN compared to other regions. 
σ e and σ i of the AVN is used to simulate its lower con-
duction properties.

The complete mesh of the generated finite element 
mesh contained 58,151 domain cells, 13,074 boundary 
cells, and 1290 edge cells. The simulation was performed 
on an Intel Core i9-12900 K workstation with a process-
ing power of approximately 35.58 TFLOPS. The simu-
lation takes about 3  h to calculate 1200 ms of cardiac 
activity with 1 ms resolution.

Cardiac potential reconstruction
The clinical ECG aims to extract the relevant parameters 
of the cardiac source from the standard 12-lead signals. 
Additionally, the ECG inverse problem aids in construct-
ing the cardiac source by comprehensively analyzing the 
distribution and variations of BSPM, ultimately enabling 
visualization of the entire cardiac potential. Fundamen-
tally, the ECG inverse problem is a data regression prob-
lem of body surface potentials and cardiac potentials. 
The mapping relationship between cardiac potentials and 
body surface potentials is usually defined according to 
[16]

 Y = TX + N  (4)

where Y  is the body surface potential, T  is the transfer 
coefficient matrix, X  is the cardiac surface potential, and 
N  is the noise.

The ECG inverse problem is considered ill-posed, 
meaning that small disturbances in the data can lead to 
significant errors in the resulting solutions. Most tradi-
tional solution methods rely on regularization techniques 
to address the ill-posed nature of the ECG inverse prob-
lem. Common regularization methods include Tikhonov 

Table 1 Conductivity and permittivity settings for model 
subdomains
Subdomain Conductivity(S/m) Permittivity
Heart 0.053677 23,562,000
Fibrous skeleton 10− 9 109

Blood chambers 0.7 5260
Lungs 0.038904 32,248,000
Torso 0.20197 25,700,000

Table 2 Region-Specific parameters of the cardiac conduction system
Parameter SAN a Atria AVN b His BNL c Purkinje Ventricles
a -0.6 0.13 0.13 0.13 0.13 0.13 0.13
b -0.3 0 0 0 0 0 0
c1 (A˙s˙V-1˙m-3) 1000 2.6 2.6 2.6 2.6 2.6 2.6
c2 (A˙s˙V-1˙m-3) 1 1 1 1 1 1 1
d 0 1 1 1 1 1 1
e 0.0489 0.0158 0.0132 0.013 0.0037 0.0056 0.0065
k (s-1) 1000 0.4 1 1 1 1 1
A (V) 0.033 0.14 0.14 0.14 0.14 0.14 0.14
B (V) -0.022 -0.085 -0.085 -0.085 -0.085 -0.085 -0.085

σ e (mS · m−1) 0.75 20 2.5 25 7.5 17.5 4

σ i (mS · m−1) 0.75 20 2.5 25 7.5 17.5 4
a SAN = sinoatrial node, b AVN = atrioventricular node, c BNL = bundle branches
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regularization and the L-curve method [8]. While these 
approaches can be as effective as more advanced meth-
ods for regularization under real fibrillation conditions, 
selecting the appropriate regularization parameters can 
be quite challenging. Even minor adjustments to these 
parameters can significantly impact the reconstruction 
performance of cardiac potentials [17].

Other methods, such as generalized singular value 
decomposition (GSVD) [23] and spatiotemporal regular-
ization (STRE) [24], also be employed to solve the ECG 
inverse problem. However, these approaches are often 
influenced by systematic noise, particularly geometric 
noise, which can result in suboptimal reconstruction of 
cardiac potential and reduced generalizability. These lim-
itations render them inapplicable for the solution of per-
sonalized models.

In recent years, machine learning and deep learning 
have developed rapidly, demonstrating higher compu-
tational efficiency and enhanced generalization perfor-
mance in solving ECG inverse problems. In this study, 
we utilized a dataset obtained from simulations of the 
cardiac EP model to employ particle swarm optimiza-
tion-back propagation neural network (PSO-BP) [25], 
convolutional neural network (CNN) [26], and long 
short-term memory (LSTM) [27] to solve the ECG 
inverse problem. We compared the reconstruction per-
formance of these different methods. Details of the 
algorithms, including model structures and parameters, 
are provided in the supplementary file. The experimen-
tal conclusions were further validated using the clini-
cal dataset exported by ECGsim, which was obtained 
through Carto system [28].

Data pre-processing and evaluation
The simulation data of the cardiac EP model described 
earlier was used to train the deep learning network mod-
els. The 1000 ms of simulated data was sampled at 1 ms 
intervals, resulting in 1000 sets of sample data. From this 
dataset, we selected 1 ms of data every 5 ms, yielding a 
total of 200 test samples, while the remaining 800 sets 
comprised the training samples. For the clinical dataset, 
data from the first 5 heartbeat cycles were used for model 
training and the 6th heartbeat cycle was designated for 
testing.

To assess the impact of the two dataset division meth-
ods on model performance, a pre-experiment was con-
ducted using LSTM networks. For the clinical dataset, we 
used the above two dataset division methods (i.e., sam-
pling at equal time intervals and dividing by heartbeat 
cycles) respectively. The results indicated that the model 
output error was not significantly different between 
these two methods, with both errors being below 0.5 mV. 
Given that the simulated dataset contained fewer heart-
beat cycles, equal time interval sampling was employed 

to better capture the information from different seg-
ments of the ECG data. In future studies, when sufficient 
ECG data are available, the method of dividing by heart-
beat cycles is recommended.

In order to make the model more robust, the following 
preprocessing works were performed on the body surface 
potential data:

(1) Add 15dB Gaussian noise to simulate the noise 
influence on the clinical data, which can improve the 
generalization performance and effectiveness of the 
algorithm.

(2) Use normalization operation to scale the feature 
values, which can avoid the difficulty of model training 
caused by excessive data differences.

The coefficient of determination R2 and mean absolute 
error (MAE) are used to quantitatively assess the accu-
racy of reconstructing the TMP. The calculation formulas 
are defined according to

 
R2 = 1 −

∑ n
i=1(yi − ŷi)2

∑ n
i=1(yi − ȳ)2  (5)

 
MAE = 1

n

∑ n

i=1
|ŷi − yi| (6)

where yi is the true value of cardiac TMP, ŷi is the mean 
value of TMP, and ȳi is the predicted value of TMP.

Results
Simulation results
Figure 2 illustrates a visualization image of the car-
diac electrical conduction activity within a single sinus 
rhythm. The SAN, atria, AVN, His bundle, BNL, Purkinje 
fibers, and ventricles are depolarized (from low to high 
potentials) and repolarized (from high to low potentials) 
sequentially based on the order of electrical activation 
propagation.

At 10th ms, electrical activation is generated in the 
SAN located in the right atrium at the upper left of the 
image (brighter part). At 50th ms, the electrical activa-
tion begins to conduct along the atrial wall and reaches 
the AVN at 80th ms, stimulating the AVN and His bundle 
to conduct action potentials. At 105th ms, the electrical 
activation begins to conduct along the right and left BNL 
and reaches the Purkinje fibers at 125th ms. During the 
period of 145–180 ms, Purkinje fibers conducts electri-
cal activation, which causes the depolarization of the left 
and right ventricles. Subsequently each part of the con-
duction system completes repolarization according to the 
sequence of depolarization. For example, the repolariza-
tion occurs in the BNL and Purkinje fibers at 220th ms 
and 245th ms, respectively. During the period of 260–290 
ms, the ventricles has completed the repolarization. The 
conduction sequence of simulation model is consistent 
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with that of human heart [29], which confirms the valid-
ity of the improved model.

Figure 3 illustrates the 64-lead ECG waveforms of a 
complete heartbeat cycle obtained from the simulation, 
with the anterior 32-lead signals in Fig. 3(a) and the pos-
terior 32-lead signals in Fig. 3(b). The vertical calipers in 
the figure mark the start and end points of the detected 
QRS wave complex. The amplitude of anterior lead sig-
nals is slightly larger than that of posterior lead signals. 
The differences between the anterior and posterior leads 
reflect the influence of the lungs on the conduction of the 
cardiac activity.

In addition, 196 nodes on the cardiac surface were 
selected to obtain TMP, including 68 atrial nodes and 
128 ventricular nodes. The acquired cardiac potentials 

combined with the 64-lead signals described above can 
be used to study the ECG inverse problem.

Model validation
ECG comparison
To verify the validity of the improved model, the simu-
lated ECG obtained from the EP model are compared 
with the clinical ECG. The clinical ECG are acquired 
from 47 samples from the MIT-BIH arrhythmia data-
base. The database utilized in this study contains only 
two lead signals per sample, and the types of leads are 
inconsistent across samples. Specifically, the majority of 
samples include leads VII and V5, while a smaller number 
of samples consist of leads VII and V1 or VII and V2. Two 
records of each lead are selected for comparison with 

Fig. 2 Sequence of cardiac electrical activation at different time. (a) Conduction system. (b) Conduction sequence
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the simulation results in this paper. The clinical data of 
VII are from records 100 and 103, V1 from 105 to 116, V2 
from 103 to 172, and V5 from 100 to 114. Figure 4 pres-
ents the waveforms of the simulation data, along with the 
range of variation over multiple cycles of the clinical data 
and the average values.

The correlation coefficients between the simulation 
results and the mean values of clinical data range from 
75.76 to 84.61%, and the trends of waveform changes 
are consistent. The results show that the cardiac electro-
physiological simulation model established in this paper 
is in general agreement with the clinical data. It should 
be noted that there are still some differences between 
simulated and real ECG signals, which are related to 
the idealized settings of the cardiac model. For exam-
ple, the model simplified the atrial structure as well as 
the Purkinje net and did not perform myocardial fiber 
orientation.

The purpose of our study is to expand the ECG data-
set needed to solve the ECG inverse problem. As shown 
in the comparison with the clinical data, the model con-
structed in this study can reflect cardiac electrical activ-
ity, and contains the mapping relationship between the 
cardiac potential and the body surface potential.

BSPM comparison
Body surface labeling techniques generally reconstruct 
cardiac potentials via BSPM, hence simulated BSPM 
and clinical BSPM are also compared. Clinical BSPM 
is obtained from patient data collected by Thomas 
Berger (Department of Internal Medicine, Division of 

Cardiology, Medical University Innsbruck, Innsbruck, 
Austria) et al. [28].

The structural similarity (SSIM) is commonly applied 
to evaluate the consistency of two types of data. SSIM 
can measure the picture distortion as well as the simi-
larity between two pictures. Unlike mean square error 
(MSE) and peak signal-to-noise ratio (PSNR), which 
measure absolute error, SSIM is a perceptual model that 
is more consistent with the human visual system. SSIM 
considers three key features of a picture: luminance 
l(a, b), contrast c(a, b), and structure s(a, b), which are 
defined according to

 

l(a, b) = (2µ aµ b + C1)/(µ 2
a + µ 2

b + C1)
c(a, b) = (2σ aσ b + C2)/(σ 2

a + σ 2
b + C2)

s(a, b) = (σ ab + C3)/(σ aσ b + C3)
 (7)

where µ a and µ b represent the mean of image a and 
image b. σ a and σ b represent the standard deviation of 
each image, σ ab is the covariance of the two images, and 
C1, C2, and C3 are scalar constants. Combining these 
three features, SSIM is defined according to

 SSIM (a, b) = [l( a, b )] [c( a, b )] [s( a, b )] (8)

The mean SSIM (MSSIM) is used to assess the degree 
of similarity between the clinical data and the simulated 
data, which is defined according to

 
MSSIM(A, B) = 1

M

∑ M

i=1
SSIM(ai, bi) (9)

Fig. 3 ECG of the body surface 64-lead signals. (a) The anterior 1–32 lead signals. (b) The posterior 33–64 lead signals
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where A and B are the reference and comparison images, 
respectively, ai and bi are the image contents of the ith 
localized window, and M is the number of localized win-
dows of the image.

Figure 5 illustrates the clinical and simulated BSPM 
corresponding to the moments when the ECG R-wave 
reached the peak, representing the distribution of the 
body surface potential during the ventricular depolariza-
tion period. The location of the heart is the lower left side 
at the middle of the whole labeling map. During the ven-
tricular depolarization, the maximum values of the body 
surface potential are all located near the left chest wall, 
while the minimum values are located on the right wall 
of the torso, demonstrating a distinct trend of bipolar 
distribution.

The MSSIM between the clinical and simulated BSPM 
shown in Fig.  5 is 0.743, calculated with a window size 

of 11 × 11 pixels. This value indicates that the simulation 
results of the cardiac EP model are similar to the poten-
tial distribution of the clinical data, and the distribution 
trend is consistent. The above results demonstrate that 
the simulated BSPM can be used to analyze the process 
of cardiac electrical activity, and obtain the correspond-
ing parameters.

TMP reconstruction of different datasets
TMP reconstruction based on simulated data
The results of TMP reconstruction at each node of the 
cardiac model are similar, and node 125 is chosen for 
illustration in this study, as shown in Fig. 6.

The TMP reconstructed by PSO-BP has slight fluc-
tuations, and the potential amplitudes reconstructed 
by 1D-CNN and 2D-CNN are more obviously differ-
ent from the true value, but all the depolarization and 

Fig. 4 Comparison of simulation results with ECG database. VII: Records 100 (a) and 103 (b). V1: Records 105 (c) and 116 (d). V2: Records 103 (e) and 172 
(f). V5: Records 100 (g) and 114 (h)
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repolarization times basically match the true value (the 
difference is less than 5%), and the trend of the three 
TMPs are consistent with the true value. The TMP recon-
structed by LSTM coincides with the true value.

To quantitatively evaluate the results of the reconstruc-
tion of cardiac potential, the cardiac surface is divided 
into four regions based on the distribution of node loca-
tions, including left atrium (LA), right atrium (RA), left 
ventricle (LV), right ventricle (RV). The results of the 
TMP reconstruction are evaluated separately for each 
region, as shown in Table 3; Fig. 7.

For the four cardiac potential reconstruction regions, 
the average values of R2 between the output values of 
all the algorithms and the true values are above 0.80, and 
the MAE are below 2.1 mV, where the R2 of LSTM can 
be reached to 0.99, and the MAE is less than 0.5 mV. The 
training duration of PSO-BP, 1D-CNN, 2D-CNN, and 
LSTM are 0.34, 1.14, 1.13, and 0.29  h, respectively. The 
reconstruction results suggest that LSTM is obviously 
more appropriate for solving the ECG inverse problem.

TMP reconstruction based on clinical data
Table 4 presents the training duration and the quantita-
tive indicators of TMP reconstruction based on clinical 
patient data. Since the various cardiac regions are barely 
delineated in the clinical data, only the overall recon-
struction results are given, without separate statistics for 
each region.

To better visualize the performance of the four meth-
ods, cardiac TMP electrograms and isopotential lines at 
five moments, 99th ms, 234th ms, 284th ms, 309th ms, 
and 330th ms, are plotted for imaging, as shown in Fig. 8.

Obviously, the cardiac TMP reconstructed by LSTM 
method is closer to the real potential distribution than 
the other methods. The results indicate that LSTM is 
superior to the first three methods in reconstructing car-
diac TMP, agreeing with the conclusions from the simu-
lated data.

Discussion
Further applications of EP modeling
In this study, a complete 3D bidomain cardiac activity 
model was constructed for simulating the conduction 
process of cardiac electrical activity, and 64-lead elec-
trodes were set on the body surface to obtain the body 
surface potential signals. Different from the existing spe-
cialized ECG positive problem simulation software (e.g., 
ECGsim), the cardiac EP model constructed has a com-
plete cardiac electrical activity conduction system. By 
varying the electrophysiological parameters and voltage-
current control equations, more realistic cardiac diseases 
such as myocardial infarction and atrial fibrillation can be 
simulated [30]. As Sovilj et al. [19]. simulated the occur-
rence of myocardial infarction by setting the infarct zone 
(conductivity and electrical excitation conduction coef-
ficient were set to 0), the ST segments of the simulated 

Fig. 5 Comparison of (a) the clinical BSPM and (b) the simulated BSPM
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waveforms appeared to change in accordance with the 
clinical case. Alday et al. [12]. simulated the activity of 
atrial ectopic foci by applying different cycles of electri-
cal pulse stimulation to the atria in order to study the 
changes in P-wave morphology caused by rapid atrial 
arrhythmias, such as atrial tachycardia and atrial fibril-
lation. Given the relatively scarce available clinical data-
sets, in future studies, we could consider providing more 
abundant training samples for the ECG inverse problem 
by modeling the occurrence of various types of cardio-
vascular diseases.

Performance of deep learning
Based on the constructed cardiac EP model, the simu-
lated data were used as the training samples for the 

Table 3 Results of TMP reconstruction of cardiac surface for 8 
regions by 4 methods

PSO-BP a 1D-CNN b 2D-CNN c LSTM d

LA R2 e (%) 93.2 ± 1.40 94.4 ± 0.64 94.3 ± 0.66 96.9 ± 0.40
MAE f (mV) 1.00 ± 0.14 0.75 ± 0.05 0.73 ± 0.05 0.40 ± 0.04

RA R2 (%) 85.0 ± 3.80 96.0 ± 0.30 95.2 ± 0.40 96.6 ± 0.35
MAE (mV) 1.57 ± 0.23 0.70 ± 0.04 0.72 ± 0.05 0.45 ± 0.06

LV R2 (%) 84.6 ± 3.80 98.5 ± 0.44 98.6 ± 0.58 99.7 ± 0.11
MAE (mV) 1.88 ± 0.17 0.86 ± 0.40 0.54 ± 0.08 0.22 ± 0.05

RV R2 (%) 90.0 ± 0.90 98.3 ± 0.41 98.7 ± 0.26 99.8 ± 0.03
MAE (mV) 1.57 ± 0.11 0.66 ± 0.04 0.51 ± 0.04 0.19 ± 0.03

a PSO-BP = Particle swarm optimization-back propagation neural network, b 
1D-CNN = One-dimensional convolutional neural network, c 2D-CNN = Two-
dimensional convolutional neural network, d LSTM = Long short-term memory 
network, e R2 = The coefficient of determination, f MAE = The mean absolute 
error

Fig. 6 Comparison of reconstructed TMP with real waveforms. (a) Particle swarm optimization-back propagation neural network (PSO-BP). (b) One-
dimensional convolutional neural network (1D-CNN). (c) Two-dimensional convolutional neural network (2D-CNN). (d) Long short-term memory network 
(LSTM)
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neural network. The PSO-BP, 1D-CNN, 2D-CNN, and 
LSTM were used respectively to reconstruct the cardiac 
potentials, and the experimental conclusions were vali-
dated with clinical datasets. The R2 between the recon-
struction results of all the algorithms and the true value 
is above 0.80, and the MAE is below 2.1 mV. The R2 of 
LSTM is about 0.99 and MAE about 0.5 mV, suggest-
ing that LSTM has the best performance in the cardiac 
potential reconstruction. The cardiac electrical signals 
have physiological properties and exhibit patterns of 
change over time. LSTM is efficient at processing the 
relationships between temporal signals due to its abil-
ity to learn long-term dependencies in sequence data. 
This capability may explain why LSTM is well-suited for 
reconstructing cardiac potentials.

Limitations
The bidomain cardiac activity model constructed in this 
paper has idealized and simplified the geometric model 
of the cardiac conduction system and torso, which may 
impact the accuracy and reliability of the model in simu-
lating real clinical scenarios. For example, the geometry 
of the bundle branches is different from the real anatomi-
cal structure (combining left anterior and left posterior 

branches into a single bundle), which may result in the 
inability to accurately differentiate between left anterior 
and left posterior bundle branches block. The lack of 
fiber orientation and the simplification of the Purkinje 
net in the cardiac structure can affect the generation of 
ECG signals. This is one of the factors contributing to the 
differences observed between simulated and real ECG 
signals. The simplification of the torso may also lead to 
inconsistencies between the simulated lead sites and 
the clinical locations. In addition, only cardiac electrical 
activity conduction is simulated in this paper, which does 
not involve the cardiac mechanical motion as well as 
electromagnetic coupling. A limited number of simula-
tion datasets and data types may also lead to overfitting. 
Therefore, in future studies, we can consider further opti-
mizing the complexity of the model, extracting cardiac 
medical imaging data to establish a geometric model and 
simulating the multimodal activities of the heart through 
the coupling of multiple physical fields, so as to improve 
the reliability and operability of the model in clinical 
practice.

Conclusions
Compared with traditional 12- or 18-lead, ex vivo elec-
trophysiology imaging can provide more abundant car-
diac information. Compared with invasive diagnostic 
methods, it can provide a safe and non-invasive approach 
for health monitoring, favoring the screening and iden-
tification of patients at high risk of cardiac diseases. 
Using deep learning technology to solve the ECG inverse 
problem, with less computational cost and shorter train-
ing duration, the visualization of cardiac potentials can 
be achieved rapidly and efficiently, which is of great 

Table 4 Training duration and TMP reconstruction results based 
on clinical data

PSO-BP a 1D-CNN b 2D-CNN c LSTM d

Duration (h) 5.8 2.2 1.9 1.4
R2 (%) 92.5 ± 3.2 92.1 ± 4.5 96.8 ± 1.6 97.5 ± 1.2
MAE (mV) e 3.01 ± 0.79 2.07 ± 0.23 1.48 ± 0.16 1.20 ± 0.13
a PSO-BP = Particle swarm optimization-back propagation neural network, b 
1D-CNN = One-dimensional convolutional neural network, c 2D-CNN = Two-
dimensional convolutional neural network, d LSTM = Long short-term memory 
network

Fig. 7 Quantitative analysis of reconstruction results and true values. (a) The mean value of the coefficient of determination (R2) for each region. (b) The 
mean value of the mean absolute error (MAE) for each region. PSO-BP = Particle swarm optimization-back propagation neural network, 1D-CNN = One-
dimensional convolutional neural network, 2D-CNN = Two-dimensional convolutional neural network, LSTM = Long short-term memory network
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significance for guiding the pre-operative diagnosis as 
well as catheter ablation procedures.
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LSTM  Long short-term memory network
LV  Left ventricle
MAE  Mean absolute error
MRI  Magnetic resonance imaging
MSE  Mean square error
MSSIM  Mean structural similarity
PSNR  Peak signal-to-noise ratio
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