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Abstract
Objective The long-term prognosis of diabetic patients with coronary artery disease (CAD) is influenced by various 
clinical variables and biomarkers. This study aimed to develop and validate a prognostic model that integrates clinical, 
echocardiographic, and angiographic data to predict disease progression.

Methods We retrospectively analyzed 396 diabetic CAD patients with a 3-year follow-up starting from their first 
coronary angiography. Outcome variables included recurrent myocardial infarction, unstable angina rehospitalization, 
heart failure, ischemic stroke, cardiovascular death, and all-cause death. Non-progression was defined as the absence 
of these events. Variables included clinical data, echocardiographic parameters, coronary angiography results, and 
biomarkers. A multivariate Cox regression model was developed, incorporating key factors (coronary lesion number, 
myocardial infarction history, ejection fraction, and creatinine).

Results Multivariate analysis identified the number of obstructed coronary arteries, history of myocardial infarction, 
ejection fraction, and creatinine level as independent predictors of disease progression. The model showed good 
predictive performance, with AUC values of 0.742, 0.782, and 0.816 at 3, 6, and 9 months, respectively. The C-index 
was 0.669 (95% CI: 0.5959–0.7196) in the training set and 0.695 (95% CI: 0.5781–0.7436) in the validation set, reflecting 
consistent predictive performance. Calibration curves showed excellent agreement between predicted and observed 
outcomes.

Conclusion We developed and validated a practical nomogram integrating clinical, biochemical, and imaging data 
to predict short-term disease progression in diabetic patients with CAD. This tool may assist clinicians in early risk 
stratification and individualized management planning.
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Introduction
Coronary artery disease (CAD) is a leading cause of 
death worldwide, particularly among diabetic patients 
[1–3]. Diabetes mellitus exacerbates the progression of 
CAD, leading to increased rates of cardiovascular events 
and mortality [4]. The inadequate control of risk factors 
in diabetic patients results in a higher burden of athero-
sclerotic plaques, causing ischemia and subsequent acute 
cardiac injury [5]. Prolonged exposure to hyperglycemia 
and dyslipidemia causes progressive and irreversible 
damage to the coronary vasculature, further complicating 
the management of CAD in diabetic patients [6].

Despite advancements in diagnostic and therapeutic 
approaches, such as the development of novel antiplatelet 
therapies and the widespread use of percutaneous coro-
nary interventions (PCI) [7], predicting the progression 
of CAD in diabetic patients remains a significant chal-
lenge due to the complex interplay of clinical, imaging, 
and genetic factors. Traditionally, CAD risk stratification 
relies on clinical parameters such as age, blood pressure, 
cholesterol levels, and glycemic control [5, 8]. However, 
these factors alone are insufficient to predict disease 
progression, particularly in diabetic patients where tra-
ditional risk factors may not fully capture the disease’s 
complexity [9, 10]. Ultrasound imaging, including mea-
sures of coronary flow, plaque characteristics, and vas-
cular reactivity, has shown promise in providing valuable 
insights into the structural and functional aspects of 
CAD [11]. Furthermore, angiographic data, such as the 
extent of coronary artery stenosis, is a key determinant 
of disease severity and prognosis [12]. However, these 
modalities are typically used in isolation, and a compre-
hensive approach that integrates multiple types of data is 
lacking.

Therefore, the most effective approach to mitigating the 
impact of CAD in this population is through the develop-
ment of a comprehensive prognostic model that restores 
the ability to predict disease progression and thereby 
prevents further cardiovascular events [13, 14]. Timely 
prediction and intervention decrease cardiac morbidity 
and mortality and are the primary therapeutic strategies 
for treating CAD in diabetic patients [15]. However, cur-
rent models often rely predominantly on a single dimen-
sion of patient information—such as clinical scores based 
largely on symptomatology and limited laboratory indi-
ces, or angiographic grading systems focusing solely on 
anatomical lesion complexity—without accounting for 
other critical factors. For instance, commonly used clini-
cal prediction tools emphasize clinical and laboratory 
parameters but fail to incorporate detailed imaging find-
ings, while imaging-based scoring systems like the SYN-
TAX score highlight anatomical severity but overlook 
metabolic or functional parameters [16]. This narrow 
focus leads to an incomplete understanding of disease 

progression mechanisms and can leave clinicians uncer-
tain about optimal intervention timing or the selection of 
appropriate therapeutic strategies [17]. Despite continu-
ous refinements in risk stratification methodologies, a 
truly comprehensive prognostic tool that seamlessly inte-
grates clinical, echocardiographic, angiographic, and bio-
marker data remains elusive. Such a multimodal model 
would not only deepen insight into disease dynamics in 
diabetic CAD patients but also guide more effective and 
personalized clinical decision-making. Thus, there is a 
great need to define novel mechanisms of disease pro-
gression that could be targeted for the treatment of CAD 
in diabetic patients. Recent advances in statistical prog-
nostic modeling offer exciting opportunities to improve 
disease prediction by combining multimodal data [18–
20]. This approach has been particularly useful in creat-
ing predictive models that incorporate clinical, imaging, 
and angiographic data to better assess the risk of disease 
progression in various cardiovascular conditions [21, 22].

In this study, we propose a multimodal nomogram that 
integrates clinical, ultrasound, and angiographic data 
to predict disease progression in diabetic patients with 
CAD.

Each data source provides a unique dimension of 
prognostic insight: clinical metrics (such as past myo-
cardial infarction history or comorbidities) capture 
baseline risk and systemic disease burden; echocardio-
graphic parameters (like ejection fraction and ventricu-
lar dimensions) reflect cardiac function and remodeling; 
and angiographic data (including the number and sever-
ity of obstructed coronary arteries) directly quantify the 
structural extent of atherosclerotic disease. By combining 
these complementary domains, we create a more holistic 
and precise representation of an individual patient’s car-
diovascular risk. Our analysis reveals a previously unrec-
ognized multimodal activation of the prognostic model, 
highlighting that such integration reduces the uncertainty 
of disease progression, decreases the risk of cardiovascu-
lar events, and improves the accuracy of risk prediction. 
This comprehensive approach holds promise for inform-
ing tailored therapeutic strategies and ultimately improv-
ing outcomes in diabetic patients with CAD.

Materials and methods
Study population
A total of 453 diabetic patients with coronary artery dis-
ease (CAD) who underwent selective coronary angiog-
raphy (CAG) from June 2022 to November 2023 were 
initially included in this retrospective cohort study. 
Patient data were collected from the Department of Car-
diology, the Fourth Affiliated Hospital of China Medi-
cal University. The exclusion criteria were as follows: 
patients with concurrent cardiac conditions (e.g., val-
vular heart disease, pericarditis, or significant systemic 
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diseases affecting prognosis) (n = 23); those with a his-
tory of coronary artery bypass grafting (CABG) or per-
cutaneous coronary intervention (PCI) within the past 6 
months (n = 10); patients unable to comply with follow-
up or with incomplete follow-up data, as well as those 
with severe cognitive dysfunction or other psychologi-
cal conditions that might interfere with participation 
(n = 9); and patients who could not provide informed 
consent (n = 15). As a result, 396 patients met the inclu-
sion criteria and were included in the final analysis. The 
non-progression group consisted of patients who did 
not experience any of these events during the follow-
up period. Of these 396 patients, 70% were randomly 
assigned to the training set and 30% to the validation 
set to develop and validate the prognostic model. The 
progression group included patients with recurrent 
myocardial infarction, unstable angina requiring rehos-
pitalization, heart failure, ischemic stroke, cardiovascular 
death, or all-cause mortality. The non-progression group 
consisted of patients who did not experience any of these 
events during the follow-up period. (Fig. 1).

Model construction and assessment
To predict disease progression in diabetic patients with 
coronary artery disease (CAD), we developed a multi-
modal nomogram integrating clinical, ultrasound, and 
angiographic data. Clinical data included demographic 
information (age, sex, duration of diabetes, comorbidi-
ties), laboratory test results (e.g., blood glucose levels, 
lipid profile), and clinical history (e.g., previous myocar-
dial infarction, hypertension, smoking history). Ultra-
sound data include ascending aorta diameter, ventricular 
septum thickness, left ventricular systolic diameter, left 
ventricular diastolic diameter, left ventricular stroke vol-
ume, and EF value. Our EF is measured using the Simp-
son biplane method. The ultrasound equipment used in 
our study was the Philips EPIQ CVx cardiac ultrasound 
system (Philips Healthcare, Andover, MA, USA). Angio-
graphic data included the number and location of coro-
nary artery lesions (e.g., left anterior descending artery, 
circumflex artery, right coronary artery). Cox propor-
tional hazards regression analysis was employed to iden-
tify prognostic factors for disease progression. Variables 
with P ≤ 0.10 in univariate analysis were included in 
multivariate Cox regression analysis. To ensure robust 
predictor selection and minimize the risk of overfitting, 
stepwise selection was applied during the multivari-
ate analysis. This method helps identify the most rel-
evant variables while balancing model complexity and 
predictive accuracy. Based on the multivariable analysis 
results, we constructed prognostic models for 3-month, 
6-month, and 9-month outcomes. The model’s perfor-
mance was evaluated using the area under the receiver 
operating characteristic curve (AUC) and concordance 

index (C-index) to assess the goodness-of-fit and dis-
criminatory ability of the nomogram. Calibration of the 
nomogram was assessed using calibration curves, and 
decision curve analysis (DCA) was performed to evaluate 
its clinical utility. Kaplan-Meier methods and log-rank 
tests were used to calculate and compare differences in 
disease progression between groups. All internal valida-
tion was performed using bootstrapping with 200 resam-
ples to assess the robustness and stability of the selected 
variables and model performance.

Statistical analyses
Statistical analyses were performed using R (version 
4.3.1) for Windows. Baseline characteristics were ana-
lyzed using the compareGroups package, which auto-
matically selects appropriate statistical tests based on 
variable type and distribution—typically applying t-tests 
or Mann–Whitney U tests for continuous variables, and 
chi-square or Fisher’ s exact tests for categorical vari-
ables. The summary table, including descriptive statistics 
and p-values for group comparisons, was formatted using 
the CBCgrps package. The nomogram, decision curve 
analysis, and calibration curves were generated using the 
rms package in R. Survival analysis was conducted using 
Kaplan-Meier methods, and differences in disease pro-
gression were compared using the log-rank test, with the 
survminer and survival packages in R. The concordance 
index (C-index) was selected as the primary metric for 
model performance, as it reflects the model’s ability to 
correctly rank patients by risk while accounting for cen-
soring and varying follow-up times, which are inherent 
in time-to-event data. A P-value of < 0.05 was considered 
statistically significant.

Rusult
Patient characteristics
A total of 396 diabetic patients with coronary artery dis-
ease (CAD) were included in the analysis, all of whom 
had complete baseline clinical, laboratory, and ultra-
sound data (Fig.  1). The clinical characteristics of these 
patients are summarized in Table 1.

All p-values comparing the training and validation 
cohorts were greater than 0.05, indicating that there were 
no statistically significant differences in baseline charac-
teristics between the two groups. The median age of the 
cohort was 65.00 years (IQR: 57.75–70.25), with 63.38% 
(n = 251) being male and 36.62% (n = 145) female. Hyper-
tension was present in 76.26% of patients (n = 302), and 
27.27% (n = 108) had a history of myocardial infarction.

Additionally, 42.93% (n = 170) reported a history of 
smoking. Multi-vessel disease was prevalent, with 70.20% 
(n = 278) exhibiting lesions in multiple coronary arteries.
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Prognostic factors for disease progression
Univariate Cox regression analysis identified eight base-
line parameters significantly associated with disease 
progression (DP) at a threshold of P < 0.2, including the 
number of coronary lesions, history of myocardial infarc-
tion, serum potassium levels, creatinine (Cr), blood urea 
nitrogen (BUN), ejection fraction (EF), left ventricular 
end-systolic diameter (LVDs), and left ventricular end-
diastolic diameter (LVDd).

Multivariate Cox regression analysis (N = 396) further 
revealed four independent predictors of DP: the number 
of coronary lesions, history of myocardial infarction, cre-
atinine (Cr), and ejection fraction (EF) (Table  2; Fig.  2). 
We assessed potential multicollinearity among these pre-
dictors using Variance Inflation Factor (VIF) analysis, 
with all values < 2 (lesions: 1.07; MI: 1.02; Cr: 1.41; EF: 
1.25), indicating no significant collinearity. Additionally, 
pairwise interaction terms were tested and found to be 
non-significant. These predictors reflect the combined 

Fig. 1 Flowchart
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impact of anatomical, functional, and biochemical factors 
on disease progression in diabetic patients with CAD.

Development and validation of the prognostic nomogram
Based on the four independent predictors identified 
in the multivariate Cox regression, a nomogram was 

constructed to estimate the 3-, 6-, and 9-month disease 
progression risk in diabetic patients with CAD (Fig. 3A).

The nomogram provides a practical tool for clinicians 
to identify high-risk patients and tailor therapeutic strat-
egies accordingly.

Patients were stratified into high- and low-risk groups 
based on the median score, with the low-risk group 

Table 1 Baseline characteristics of patients with diabetes mellitus combined with coronary heart disease
[ALL] N = 396 Validation N = 119 Train N = 277 p.overall

genders: 1
 females 145 (36.62%) 44 (36.97%) 101 (36.46%)
 Male 251 (63.38%) 75 (63.03%) 176 (63.54%)
years 65.00 [57.75;70.25] 64.00 [57.00;70.00] 65.00 [58.00;71.00] 0.293
Progression: 0.312
 no 284 (71.72%) 90 (75.63%) 194 (70.04%)
 yes 112 (28.28%) 29 (24.37%) 83 (29.96%)
time 36.00 [15.75;36.00] 36.00 [36.00;36.00] 36.00 [12.00;36.00] 0.131
AO 34.00 [32.00;36.00] 34.00 [32.00;36.00] 34.00 [32.00;36.00] 0.739
IVS 9.00 [8.00;10.00] 9.00 [8.00;10.00] 9.00 [8.00;10.00] 0.323
LVDd 48.00 [45.00;51.00] 48.00 [45.00;51.00] 48.00 [45.00;51.00] 0.87
LVDs 31.00 [27.75;35.00] 32.00 [28.00;36.00] 30.00 [27.00;35.00] 0.219
SV 49.00 [43.00;58.00] 50.00 [44.00;58.50] 49.00 [43.00;58.00] 0.452
EF: 0.886
 < 50% 37 (9.34%) 12 (10.08%) 25 (9.03%)
 ≤ 50% 359 (90.66%) 107 (89.92%) 252 (90.97%)
TC 3.33 [2.78;4.23] 3.29 [2.76;4.21] 3.33 [2.79;4.28] 0.782
HDL 0.80 [0.69;0.94] 0.81 [0.66;0.94] 0.80 [0.70;0.94] 0.896
LDL 1.88 [1.37;2.59] 1.81 [1.37;2.62] 1.88 [1.36;2.59] 0.896
CK 70.50 [49.00;111.25] 72.00 [50.50;115.50] 70.50 [49.00;107.00] 0.341
CKMB 16.40 [12.10;21.40] 16.40 [11.95;19.55] 16.40 [12.40;21.60] 0.396
BUN 5.30 [4.41;6.26] 5.30 [4.48;6.12] 5.30 [4.39;6.38] 0.898
Cr 69.00 [60.00;79.05] 69.00 [60.00;77.00] 69.00 [60.00;81.00] 0.466
K 3.96 [3.74;4.14] 3.94 [3.68;4.16] 3.96 [3.77;4.13] 0.553
Height 168.00 [162.00;171.25] 168.00 [162.00;170.00] 168.00 [162.00;172.00] 0.739
Weight 70.00 [65.00;75.00] 70.00 [65.00;74.00] 70.00 [65.00;75.00] 0.638
Hypertension: 0.562
 no 94 (23.74%) 31 (26.05%) 63 (22.74%)
 yes 302 (76.26%) 88 (73.95%) 214 (77.26%)
smoke: 0.328
 no 226 (57.07%) 63 (52.94%) 163 (58.84%)
 yes 170 (42.93%) 56 (47.06%) 114 (41.16%)
Alcoholism: 0.638
 no 333 (84.09%) 98 (82.35%) 235 (84.84%)
 yes 63 (15.91%) 21 (17.65%) 42 (15.16%)
MI: 0.467
 no 288 (72.73%) 90 (75.63%) 198 (71.48%)
 yes 108 (27.27%) 29 (24.37%) 79 (28.52%)
Lesion: 0.235
 1 118 (29.80%) 30 (25.21%) 88 (31.77%)
 >=3 278 (70.20%) 89 (74.79%) 189 (68.23%)
Note: Values are presented as median (interquartile range) or n (%), as appropriate. p.overall values represent statistical comparisons between the training and 
validation sets. AO: Aortic Diameter; IVS: Interventricular Septum; LVDd: Left Ventricular Diastolic Diamete; LVDs: Left Ventricular Systolic Diameter; SV: Stroke 
Volume; EF: Ejection Fraction; TC: Total Cholesterol; HDL: High-Density Lipoprotein; LDL: Low-Density Lipoprotein; CK: Creatine Kinase; CKMB: Creatine Kinase 
Isoenzyme MB; BUN: Blood Urea Nitrogen; Cr: Creatinine; K: Potassium; MI: History of myocardial infarction; smoke: smoking history; Alcoholism: drinking history; 
Lesion: Number of coronary lesions
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demonstrating significantly better survival probabilities 
(Fig. 3B).

The nomogram’s predictive accuracy was evaluated in 
both the training and validation sets. In the training set, 
the model demonstrated good discriminative ability, with 
AUC values of 0.680 (3 months), 0.702 (6 months), and 
0.705 (9 months) (Fig. 4A).

In the validation set, the AUC values were 0.742, 0.782, 
and 0.816, respectively, confirming the model’s external 
generalizability (Fig. 4B).

The concordance index (C-index) was 0.669 (95% CI: 
0.5959–0.7196) in the training set and 0.695 (95% CI: 
0.5781–0.7436) in the validation set.

Calibration curves indicated excellent agreement 
between predicted and observed outcomes in both train-
ing and validation sets at 3, 6, and 9 months (Fig. 5A-F).

Discussion
In this study, we developed and validated a multimodal 
nomogram that integrates clinical, ultrasound, and 
angiographic data to predict disease progression in dia-
betic patients with coronary artery disease (CAD). Our 
findings demonstrated that a comprehensive approach 
incorporating the number of obstructed coronary arter-
ies, previous myocardial infarction history, creatinine 

(Cr) levels, and left ventricular ejection fraction (EF) sig-
nificantly enhances the accuracy of short- and intermedi-
ate-term risk predictions. By contrast, conventional risk 
stratification models that rely solely on clinical or labora-
tory parameters frequently fail to fully capture the com-
plex interplay of pathophysiological factors contributing 
to CAD progression in the diabetic population [23, 24].

Studies have shown that diabetes promotes widespread 
intimal thickening, impaired collateral vessel forma-
tion, and rapid plaque progression, resulting in a greater 
degree of coronary artery obstruction [25, 26]. Cardiac 
function is largely dependent on the preservation of cor-
onary vascular function [27]. The number of obstructed 
coronary arteries reflects the anatomical severity and 
extent of atherosclerosis [28, 29]. Therefore, the degree of 
coronary artery obstruction serves as an early and sensi-
tive indicator of disease severity and progression in this 
population. A history of myocardial infarction (MI) indi-
cates prior plaque rupture and myocardial injury [29], 
and diabetic patients are more likely to experience silent 
or atypical MIs due to autonomic neuropathy, resulting in 
delayed diagnosis and increased myocardial damage [30]. 
Moreover, diabetes is associated with impaired infarct 
healing and adverse remodeling, compounding the risk of 
future cardiovascular events [31]. Together, these factors 

Table 2 Univariate and multivariate COX regression of factors associated with disease progression
characteristics Univariate COX regression multivariate COX regression VIF

OR CI P OR CI P
Lesion 1.997 1.171–3.404 0.011 2.259 1.304–3.915 0.004 1.07
MI 1.657 1.062–2.587 0.026 1.623 1.035–2.544 0.035 1.02
Alcoholism 0.812 0.431–1.532 0.521
smoke 1.11 0.719–1.713 0.638
Hypertension 1.003 0.601–1.674 0.99
K 2.233 1.16–4.302 0.016
Cr 1.01 1.006–1.013 < 0.001 1.006 1.002–1.01 0.002 1.41
BUN 1.116 1.069–1.165 < 0.001
CKMB 0.998 0.989–1.007 0.622
CK 0.999 0.998–1.001 0.31
LDL 0.838 0.666–1.054 0.131
HDL 0.506 0.18–1.426 0.198
TC 0.875 0.726–1.054 0.161
EF 0.259 0.153–0.439 < 0.001 0.265 0.148–0.477 < 0.001 1.25
SV 1.015 0.997–1.033 0.104
LVDs 1.049 1.02–1.078 0.001
LVDd 1.066 1.03–1.104 < 0.001
IVS 1.064 0.92–1.23 0.402
AO 1.005 0.945–1.07 0.866
years 1.004 0.983–1.026 0.699
genders 1.104 0.703–1.733 0.668
Note: AO: Aortic Diameter; IVS: Interventricular Septum; LVDd: Left Ventricular Diastolic Diamete; LVDs: Left Ventricular Systolic Diameter; SV: Stroke Volume; EF: 
Ejection Fraction; TC: Total Cholesterol; HDL: High-Density Lipoprotein; LDL: Low-Density Lipoprotein; CK: Creatine Kinase; CKMB: Creatine Kinase Isoenzyme MB; 
BUN: Blood Urea Nitrogen; Cr: Creatinine; K: Potassium; MI: History of myocardial infarction; smoke: smoking history; Alcoholism: drinking history; Lesion: Number 
of coronary lesions; CI: Confidence Interval; OR: Odds Ratio; VIF: Variance Inflation Factor;

VIF values were calculated to assess multicollinearity among predictors retained in the final multivariate model. All VIF values were < 2, indicating no significant 
multicollinearity
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make prior MI a powerful marker of cumulative ischemic 
burden and disease instability in diabetic patients [32, 
33]. Elevated serum creatinine levels serve as a marker 
of renal dysfunction, a common comorbidity in diabetes 
that promotes systemic inflammation, oxidative stress, 
and vascular calcification—factors that exacerbate coro-
nary pathology. Reduced left ventricular ejection frac-
tion represents impaired myocardial contractility, often 

a downstream consequence of chronic ischemia, infarc-
tion, and diabetic cardiomyopathy [34]. These predictors 
are not isolated but pathophysiologically linked.

Multivessel disease increases the likelihood of signifi-
cant ischemia and infarction, which in turn impairs ven-
tricular function (lower EF) [34]. Renal dysfunction not 
only amplifies systemic atherogenic processes but also 
worsens myocardial remodeling and neurohormonal 

Fig. 2 Forest plot of multivariable cox regression analysis. This forest plot illustrates the hazard ratios (HR) and 95% confidence intervals (CI) for various 
cardiovascular risk factors assessed through multivariable Cox regression. The variables included are creatinine (Cr), number of coronary artery lesions (Le-
sion), history of myocardial infarction (MI), and ejection fraction (EF). Each factor’s impact on cardiovascular outcomes is represented by the (square), with 
the area of the square corresponding to the factor’s weight in the analysis, and the (line) extending to the left and right indicating the 95% CI. The (verti-
cal line) at 1.0 serves as a reference for a neutral effect. Creatinine (Cr): The HR is 1.006 with a 95% CI of 1.002 to 1.01, suggesting a minor but statistically 
significant increase in risk with higher creatinine levels (P = 0.002). Coronary Artery Lesions (Lesion): With an HR of 2.259 and a 95% CI of 1.304 to 3.915, a 
higher number of lesions is associated with a significant increase in cardiovascular risk (P = 0.004). Myocardial Infarction (MI): Patients with a history of MI 
have an HR of 1.623, with a 95% CI of 1.035 to 2.544, indicating an increased risk compared to those without MI (P = 0.035). Ejection Fraction (EF): A lower 
EF is associated with a significantly reduced risk, as shown by an HR of 0.265 and a 95% CI of 0.148 to 0.477 (P < 0.001)
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Fig. 3 (A) Nomogram integrating the number of obstructed coronary arteries (Lesion, defined as ≥ 50% stenosis), previous myocardial infarction (MI), 
creatinine (Cr) level, and left ventricular ejection fraction (EF) to estimate the 3-, 6-, and 9-month risk of disease progression in diabetic patients with coro-
nary artery disease (CAD). To use the nomogram, draw vertical lines from each variable to the corresponding points scale, sum these points to obtain a 
total score, and then reference the probability scale at the bottom to determine the individual patient’s predicted risk. (B) Kaplan–Meier survival curves 
for patients stratified into high- and low-risk groups according to the median nomogram-derived risk score. Patients in the high-risk group showed a 
significantly higher incidence of disease progression compared to those in the low-risk group (log-rank test, P = 0.00077)
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Fig. 5 (A–C) Calibration curves for the training set at 3, 6, and 9 months, respectively, illustrating close agreement between the predicted probabilities 
of disease progression and the observed outcomes. (D–F) Calibration curves for the validation set at 3, 6, and 9 months, respectively, confirming that the 
nomogram’s predictive accuracy and reliability are maintained in an independent cohort

 

Fig. 4 (A) Receiver Operating Characteristic (ROC) curves for the training set evaluating the nomogram’s performance in predicting disease progression 
at 3, 6, and 9 months. The robust Area Under the Curve (AUC) values indicate strong discriminative ability of the model. (B) ROC curves for the valida-
tion set demonstrating similarly strong AUC values at 3, 6, and 9 months, confirming the external generalizability and reproducibility of the nomogram’s 
predictive performance
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activation [35]. A prior MI often coexists with impaired 
EF and extensive coronary lesions [36]. In diabetic 
patients, these interactions are further intensified by 
microvascular disease, metabolic dysregulation, and 
chronic inflammation. Therefore, integrating these four 
parameters enables a comprehensive assessment of 
structural, functional, and systemic risk, offering robust 
predictive value for disease progression in this high-risk 
population.

We evaluated model performance at extended time 
points (12, 18, and 24 months, as presented in Supple-
mentary Fig.  1), and while the Area Under the Curve 
(AUC) values remained acceptable, our analysis showed 
that the highest predictive performance was observed at 
3, 6, and 9 months (Fig. 4). These shorter-term intervals 
demonstrated stronger discriminative power, suggesting 
that early events in diabetic patients with CAD are more 
reliably predictable. Furthermore, early disease progres-
sion is clinically meaningful in this population. Coronary 
microvascular disease (CMD)—a condition that often 
precedes overt coronary artery disease—is known to play 
a central role in early cardiovascular deterioration and 
has been associated with worse long-term outcomes. As 
such, the 3-, 6-, and 9-month windows were intention-
ally chosen to capture these critical early stages, where 
timely intervention may have the greatest impact. While 
longer follow-up periods may provide additional insights, 
our aim was to identify early predictive markers that can 
support proactive clinical decision-making. We plan to 
expand the follow-up period in future prospective studies 
to assess long-term applicability.

Despite its strengths, our study has limitations. First, 
this was a retrospective, single-center analysis, which 
may limit the generalizability of our findings. Third, 
global longitudinal strain (GLS), a sensitive marker of 
subclinical myocardial dysfunction in diabetic patients, 
was not included due to limited data availability, which 
may have affected the model’s ability to detect early car-
diac changes. Fourth, the nomogram’s predictive per-
formance was evaluated only at 3, 6, and 9 months; 
extending predictions to longer time horizons would 
provide additional clinical utility. In addition, the model 
was not compared against existing risk scores such as 
SYNTAX, GRACE, or TIMI, which may limit the con-
text for interpreting its relative predictive value. Finally, 
the retrospective design may introduce potential biases, 
and prospective studies are needed to validate the nomo-
gram’s real-world applicability.

Conclusion
We developed and validated a multimodal nomogram 
integrating clinical, imaging, and biochemical data to 
predict disease progression in diabetic patients with 
CAD. The model demonstrated good discrimination 

and calibration, providing a practical tool for individual-
ized risk stratification. Our findings underscore the value 
of multimodal data in personalized cardiovascular risk 
assessment and patient management.
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