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Abstract 

Globally, the high number of deaths are happening due to Myocardial infarction (MI). MI is considered as a life-threat-
ening disease, which leads to an increase number of deaths or damage to the heart, and hence, prompt detection 
of MI is critical to decrease the mortality rate. Though, numerous works have addressed MI identification, an increased 
number suffer from over fitting and high computational burden in real-time scenarios. The proposed system intro-
duces a novel MI detection technique using a Deep Residual Network (DRN), where the solution is optimized 
by the proposed Social Ski-Spider (SSS) Optimization algorithm is the novel combination of both Social Ski-driver 
(SSD) Optimization and the Spider Monkey Optimization (SMO). This model highly prevents the overfitting and com-
putational burden, which increases the MI detection accuracy. Here, the proposed SSS-DRN performs detection 
by filtering the electrocardiography (ECG) signals. Later, the signal feature, transform feature, medical feature and sta-
tistical feature are extracted by the feature extraction phase followed by data augmentation that consists of permuta-
tion, random generation and re-sampling processes and finally, detection is accomplished by the SSS-DRN. Moreover, 
the developed SSS-DRN is researched for its efficiency considering metrics like accuracy, sensitivity, and specificity 
and observed 0.916, 0.921, and 0.926. Here, when considering the accuracy metrics, the performance gain observed 
by the devised model is 13.96%, 12.61%, 10.37%, 7.95%, 5%, 2.21%, and 2% higher than the traditional schemes. 
This indicates the devised model has high detection accuracy, which could be embedded in real-time clinical set-
tings like hospital ECG machines, wearable ECG monitors, and mobile health applications. This improves the clinical 
decision-making process with increased patient outcomes.
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Introduction
Coronary or ischemic heart disease is a major health 
complexity contributing to an increased mortality rate, as 
per the World Health Organization (WHO). A key reason 
for cardiovascular disease among patients is MI, most 
often addressed as a heart attack [50]. MI is the most 
commonly found cardiac disease resulting from chronic 
myocardial ischemia [32]. MI is considered as a life-
threatening disease that occurs when the blood reten-
tiveness is increased owing to coronary artery blockage 
resulting to total death or damage to the heart. This con-
dition is generally a medical emergency that necessitates 
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urgent medical care [24]. For prompt treatment, precise 
and timely diagnoses of MI are essential. Clinically, MI 
is most commonly diagnosed using Myocardial Contrast 
Echocardiography (MCE) but clinical examination based 
on MCE has a high dependence on the operator and is 
subjective and laborious. The automated detection of MI 
based on MCE reduces the burden on medical profes-
sionals and helps in improving the efficiency of diagnosis 
[23]. Numerous signal processing techniques have been 
devised for identifying MI at the earliest using ECG. By 
observing variations in the various time-domain param-
eters that include T-wave inversion, Q-wave amplitude, 
and ST deviation, the ECG signal can effectively diagnose 
MI. By utilizing 12 lead ECG recordings, the features are 
being extracted in order to identify MI. The variations 
can be employed for diagnosing and localizing the por-
tion of the heart muscle affected and the portion of the 
coronary artery facing blockage [6]. MI diagnosis and 
localization are performed by taking the Principal Com-
ponent Analysis (PCA) of all leads based on the features 
obtained from the Q-wave of the heartbeat and the ST-T 
region [5]. MI is detected and localized in the left ventri-
cle, considering the T-wave integral and the overall ECG 
beat integral [49].

ECG signal is obtained due to the effect of electri-
cal conductivity in the myocardium cells that makes the 
heart muscles to contract and relax interchangeably in 
the auricles and ventricles [8]. ECG signals are recorded 
by keeping the electrodes at pre-determined locations 
in the human body. The pathological and morphological 
characteristics of the ECG signals vary during the occur-
rence of MI. The advancement in digitization empowers 
the systems the ability to process and acquire information 
from the ECG signals in digital form [38]. Computer-
aided diagnosis (CAD) systems are used for diagnosing 
cardiac diseases based on the ECG signals, and they are 
highly robust, precise, fast and reliable in comparison 
to the traditional approaches employed earlier [47, 49]. 
Detecting myocardial ischemia as early as possible is a 
crucial problem as it can minimize the rate of mortality, 
acute myocardial infarction, and other dangerous car-
diovascular problems. Myocardial ischemia can lead to 
heterogeneity of repolarisation, owing to the variation in 
ventricular repolarisation caused by electrophysiological 
changes [31]. Currently, 12-lead ECG is extensively used 
to monitor the electrical activities in the heart and can 
effectively trace the abnormal variations in the ST-T seg-
ments in ECG caused by the heterogeneity of repolarisa-
tion [48].

Recent years have witnessed the emerging growth of 
Deep Learning (DL) techniques in the field of MI detec-
tion because of their highly accurate performance, devoid 
of any massive signal processing needs [2, 19, 30]. DL 

approaches, such as Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), Restricted 
Boltzmann Machines (RBM), and Auto Encoder (AE) 
are utilized by the clinical system for analysing physical 
signals, like Electroencephalogram (EEG) and ECG [25] 
[16] [14]. DL is a kind of neural network that executes 
an automatic ranking of features based on a multi-layer 
hierarchy. Several studies have addressed the problem 
of estimating ventricular volume, segmenting, and cat-
egorization by combining DL schemes with random for-
ests [23]. However, DL techniques utilize a convolution 
(conv) filter having a rectangular shape, and the myocar-
dium is ring-shaped, specifically considering the MCE’s 
short axis view [15]. The usage of a rectangular conv filter 
limits the ability of the DL to describe the features and 
information in the radial direction [4, 28]. Several DL 
and Machine Learning (ML) schemes have been devised 
to analyze ECG waves for localizing, detecting, and clas-
sifying MI, based on the features mined using neural 
networks, wavelet transform, Fourier transform, Sup-
port Vector Machines (SVM), or with the help of Deep 
Neural Networks (Deep NN), directly [48]. Traditionally, 
ML methods extract the various features of ECG, like its 
frequency domain, wavelet transform, and time domain, 
amplitude. The feature selection process reduces the 
computational complexity of the ML algorithms as they 
contain required informative features [33, 34, 39]. The 
modern ML approaches utilize classifiers, like Deep NN, 
which extract the features automatically [3, 56]. Though 
several automatic MI diagnosis systems using various 
approaches to feature extraction have been developed, 
the efficacy of the techniques depends on the optimal 
choice of the extracted features [55].

Problem statement and motivation
MI arises as a harmful disease and the diagnosis of its 
occurrence time is essential to provide intervention of 
disease earlier thereby supporting the patients suffer-
ing from cardiovascular disease. Early detection helps in 
reducing the risk factors and limits the post-complica-
tions of this disease-causing heart failure. The complica-
tions and heart failure possessed by this disease can be 
reduced when detecting it earlier. The high mortality rate 
related to cardiovascular disease is raised due to MI. To 
detect MI earlier, the DL models are used for providing 
automatic detection of MI. The problems encountered 
by the classical models delay the detection. The general-
izability of the traditional models is affected due to the 
lack of diverse and well-annotated datasets. The con-
ventional schemes heavily relied on supervised learning 
and this requires a huge number of labelled data for tun-
ing the model, which remains a major limitation. When 
dealing with large datasets in real-world conditions, the 



Page 3 of 28A et al. BMC Cardiovascular Disorders          (2025) 25:371 	

traditional model struggles with the computational bur-
den. Also, these models require a vast amount of hard-
ware resources and this delays the detection results, 
which creates problems in emergency situations. The 
transfer learning approaches used failed to generate syn-
thetic data, which increases the overfitting issues and 
biases of the model. The existing models failed to han-
dle the class imbalance issues, which makes the results 
of the model a biased one. The improper selection of 
filter and feature extraction variation associated with 
the traditional models produces inconsistencies in the 
data thereby reducing the performance of the model. 
The traditional model failed to address the challenges 
such as the need for large and varied datasets, possible 
biases in data collection, and the interpretability of deep 
learning models. Numerous works have addressed the 
issue in MI detection and have developed automatic MI 
classification schemes from ECG signals. Most of the 
approaches utilize algorithms that have high computa-
tional cost and authentication time, and their perfor-
mance is impacted by the ECG signal quality. In order to 
overcome these challenges, this research proposed a DL 
model for the detection of MI. The use of DRN with SSS 
algorithm improves the performance of the model with 
improved generalizability thereby mitigating the overfit-
ting and computational issues. Here, the DRN is effective 
in preventing vanishing gradient problems and has the 
capability of capturing complex patterns from the ECG 
data. This model is highly effective in handing large data-
set due to the residual connections associated with the 
DRN. The effective tuning of DRN by the SSS improves 
the detection process and ensures that the model is com-
putationally efficient. Thus, the integration of DRN with 
SSS improves the generalizability of the model and makes 
the model reliable in the real-time clinical environment.

Contribution
This paper focuses on developing an enhanced MI detec-
tion scheme using SSS-DRN. The novel contribution is 
stated below,

Proposed SSS-DRN for MI detection: This paper pre-
sents a novel MI detection approach using SSS-DRN, 
wherein DRN is used to identify MI from the ECG 
signals. The proposed SSS algorithm is formulated 
using SMO and SSD, which improves the detection 
process.

Organization

The organization of the work is presented here; an 
elaborated view of the related work is elucidated in 

second section, the developed SSS-DRN for MI iden-
tification is focused in third section, Fourth section 
presents the experimental outcomes, evaluation of 
the technique based on the outcomes, and is con-
cluded in the fifth section.

Literature review
Numerous DL schemes have effectively accomplished 
the MI detection task; in this section, a few methods are 
contemplated for assessment. Alghamdi et  al. [1] pre-
sented a CNN-based approach for identifying MI, where 
two classes of transfer learning schemes are used. Here, 
two networks were developed, such as Visual Geometry 
Group-MI1 by performing the fine-tuning VGG-Net and 
VGG-MI2 for extracting features. This technique did not 
require additional feature extraction and segmentation 
techniques to achieve enhanced accuracy,however, the 
approach did not consider testing more data to augment 
the system efficiency. Swain et al. [49] proposed a Modi-
fied Stockwell transform (MST) and Phase distribution 
pattern to recognize the MI occurrences from the ECG 
signals. Here, MI was detected by considering the phase 
distribution pattern of Health Control (HC) and MI ECG 
signals. To determine the phase details of the ECG sig-
nals, the MST was employed and this information was 
used in order to identify MI. This technique offered 
high performance without needing any past informa-
tion on MI but suffered from higher computational costs. 
Lin et  al. [36] developed a k-Nearest Neighbour (kNN) 
approach for classifying MI. This scheme calculated 
five types of features, covering information, time-series 
similarity, and energy to examine the MI and HC ECG 
signals. Moreover, user-specified thresholds and the Stu-
dent’s test are implemented to choose the best feature 
set in the feature selection process. Finally, kNN classi-
fied the signals based on the feature set obtained. This 
approach effectively overcame the issues arising due to 
outliers, but it required the extraction of numerous fea-
tures, which lead to high computational complexity [30] 
. introduced a Shallow and End-to-End Deep NN for 
localizing and detecting MI. The features were directly 
extracted by the Shallow and End-to-End Deep NN tech-
nique from the pre-processed signals using the CNN and 
the generated feature was employed using Deep NN. 
This approach offered high classification accuracy with-
out the need for any additional processing of signals but 
failed to work effectively with signals affected by noise. 
Sun et  al. [48] presented a Lempel–Ziv (LZ) Complex-
ity based technique for detecting Myocardial Ischemia. 
Myocardial ischemia was detected using the LZ and Lya-
punov exponent (LYE) models constructed by combining 
the Fourier transform coefficient with the LZ complexity 
and LYE obtained from the CDG. This method had low 
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computational complexity,however, this method con-
sidered only fewer samples and hence was unsuccess-
ful in verifying whether quantifying CDG is sufficient 
for detecting MI. Sharma and Sunkaria [46] introduced 
an Optimal Features Based Lead Specific Approach for 
classifying MI. This approach used stationary wavelet 
transform to decompose the processed signals to wavelet 
bands, from which slope, entropy, and energy-based fea-
tures were computed. The classification was performed 
using the kNN. This approach offered high accuracy 
even when the signal was acquired from a single lead but 
was not generalizable owing to the lack of utilization of 
a large database in validation. Han and Shi [25] devised 
a Multi-lead residual neural network (ML-Res Net) to 
locate and identify MI. Here, the features were captured 
from the ECG signals by utilizing 3 residual blocks. A 
feature fusion technique was employed to localize and 
identify MI from the 12 lead ECG signals. This scheme 
effectively produced highly accurate results,however, it 
suffered from poor performance in localizing MI in the 
inter-patient method. Liu et  al. [37] introduced a Dual-
Q Tunable Q-factor Wavelet Transformation (Dual-Q 
TQWT) and wavelet packet tensor decomposition tech-
nique to detect and locate MI. The de-noised and seg-
mented ECG signals were subjected to Discrete Wavelet 
Packet Transform (DWPT) for constructing a fourth-
order wavelet tensor for representing the various features 
of the ECG signal. Later, Multi linear Principal Compo-
nent Analysis (MPCA) was utilized to protect the intrin-
sic details and minimize the dimensions of the tensor. 
Finally, classification was accomplished using bootstrap 
aggregated decision trees (Tree bagger) classifier. Though 
this technique was highly robust, it was unsuitable for 
detecting other heart diseases. Hao et  al. [26] devised 
a MI detection framework using multi-branch fusion 
framework. Here, features extracted using a multi-branch 
network from the 12 leads were subjected to a feature 
fusion module to integrate the obtained information, 
and classification was performed to identify MI. This 
approach effectively detected MI at high speed,however, 
it failed to produce accurate results in the case of ECG 
images with unclear or missing texts. Guo et al. [23] pro-
posed a Polar Residual Network (PResNet) to localize 
MI based on the MCE images. This technique devised 
a polar region to consider the myocardium’s ring shape. 
MCE images were subdivided into various sections and 
applied to the Pres Net, where the images were classified. 
This method enhanced the prominent features, thereby 
providing efficient classification, although the technique 
endured high computational costs. Deepika and Jai-
sankar [13] presented a technique, named CNN and an 
Echo Cardiogram Video (ECV- 3D) network for detect-
ing and classifying the MI from echocardiogram frames. 

However, the ECV- 3D had a few issues interpretability 
challenges, training requirements, initial investment and 
data dependence in ensuring the algorithm’s implemen-
tation. Golande and Pavankumar [22] presented a hybrid 
filtering technique by considering CNN-based features 
and classifying them using the Long Term Short Memory 
(LSTM) classifier. However, this model was not effective 
in detecting MI from raw ECG signals. Bender et al. [9] 
introduced a quantitative analysis pipeline technique 
by using Deep Neural Networks (DNN) and applied 
Explainable Artificial Intelligence (XAI) methods using 
public ECG databases. Though the pipeline technique 
had high effectiveness, the public ECG databases intro-
duced certain biases that results in improper results dur-
ing the emergency situation. Safdar et al. [43] presented 
a Data Augmentation (DA) approach to enhance an ECG 
dataset of samples from ECG signals. However, the per-
formance of the model is not satisfactory for other types 
of diseases like long ST intervals or long pauses between 
two cardiac cycles.

Challenges
A few issues that were met during the detection of MI are 
listed as follows.

The CNN-based technique in [1] for the detection 
of MI is that the approach did not utilize data aug-
mentation schemes to increase the efficiency of the 
developed technique. Further, the approach wasn’t 
extended to identify various kinds of cardiac disor-
ders, like Atrial Flutter (AF), Ventricular fibrillation 
(V-Fib), and Atrial fibrillation (A-Fib).
A kNN classifier was developed in [36] for identify-
ing MI and this technique utilized a simple feature 
extraction technique, which was effective in increas-
ing the speed of detection. However, this approach 
was unsuccessful in analyzing the features extracted 
for their distinct clinical significance, to enhance the 
efficiency of identification.
In [30], Deep NN was developed for localizing and 
detecting MI with high accuracy, however, no hard-
ware implementation was considered for detecting 
MI proactively. Further, it failed to consider real-time 
detection by modifying the standard ECG machine 
with an additional electronic circuit.
The ML-Res Net was presented in [25] for identi-
fying and localizing MI and excellent results with 
inter-patient schemes. However, the limited number 
of patient data limits the efficacy of MI detection in 
intra-patient methods, which remained a key chal-
lenge.
The existing MI detection techniques do not provide 
high accurate results in the presence of the noises in 
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ECG signals due to muscle contraction, power line 
interference, and Baseline Wanders (BW) that affect 
the stability of the detection schemes. Further, devel-
oping effective feature extraction techniques with 
minimal complexity is challenging.

Proposed social ski‑spider optimization algorithm 
for myocardial infarction using a deep residual 
network
In this paper, the SSS-DRN technique is used for detect-
ing MI, which is elaborated in this section. Signal pro-
cessing is the first step being employed in this technique; 
wherein the noises in the ECG signal is removed using the 
median filter [35]. This is followed by the identification of 
the most discriminative features from the noise-free ECG 
signals. Features, like Multiple Kernel Weighted Mel Fre-
quency Cepstral Coefficients (MKMFCC) [18], medical 
features, including R peak, QT interval, RR interval, PR 
interval, and PP interval, transform features like HAAR 
transform [12], and the statistical features such as mean, 
variance, relative energy, relative amplitude, entropy, kur-
tosis, information gain are identified. After extracting the 
salient features in ECG signals, it is followed by data aug-
mentation. It produces more information from the real 
ECG signals for overcoming the possibility of inaccurate 
prediction and over fitting arising due to the minimal 
ECG samples. By using permutation, random generation 
and re-sampling, data augmentation is being performed. 
Finally, MI identification is performed using the DRN 
[11], whose weight parameters are tuned based on the 
devised SSS algorithm. The SSS algorithm is formulated 
by adapting the SSD [52] algorithm based on the SMO 
[7] algorithm. Figure 1 shows the schematic view of the 
devised SSS-DRN model for detecting MI.

ECG signal acquisition
The process of MI detection is established by considering 
the dataset K  , which contains a total of k ECG signals, 
that is represented by,

wherein, Ki symbolizes the ith ECG signal, which is the 
input acquired for further processing and Kk is the total 
samples present in the dataset.

Median filter for pre‑processing
Here, the median filter is used in order to de-noise the 
acquired ECG signal Ki[35]. The median filter is a non-
linear digital filter that runs the signal depending on 
each value. The percussive events and harmonic com-
ponents are suppressed by the median filter and they are 

(1)K = {K1,K2, ..,Ki, ..,Kk}

separated in horizontal and vertical directions. The out-
put obtained is given by,

Here, len represents the length of the samples in the 
ECG signal. The median filter replaces every value with 
the middle value of the samples when len is odd, else, it 
is replaced by the mean of the middle two values. The 
median filter effectively minimizes the impulse noise in 
the ECG signals, and the de-noised signal Mi is subjected 
to the feature extraction phase for further processes.

Extraction of features
The feature extraction phase identifies the most dis-
criminative features from the noise-free ECG signals 
that is the de-noised signal Mi obtained from the previ-
ous process. The de-noised signal Mi is the input for the 
feature extraction phase to disclose the hidden charac-
teristics of the input ECG signals. This process extracts 
the signal feature (MKMFCC) [18], transform feature 
(HAAR), medical features, including R peak, QT interval, 
RR interval, PR interval, and PP interval, and statistical 
features such as mean, variance, relative energy, relative 
amplitude, entropy, kurtosis, and information gain are 
identified. These features are elucidated below.

Medical features
The medical features [10]in the ECG signal are deter-
mined by finding the wave components in the ECG sig-
nal. The ECG signal comprises various waves, like P wave, 
T wave, and QRS complex wave. The components in 
these waves have to be identified for the effective identi-
fication of MI. Initially, the wavelet coefficient are chosen 
appropriately for detecting R-peak and the selection of 
Q and S points are done based on five-point differentia-
tion strategy. Thereafter, the analysis between the wavelet 
coefficients of T and S marks is done. The medical fea-
tures, like R peak, QT interval, RR interval, PR interval, 
as well as PP interval are computed, which are detailed 
below.

i)	 R peak

	 It denotes the maximal amplitude of the R wave 
equalized to create the ECG signal’s R peak aspect, 
and is obtained as,

(2)Mi(ts) = median Ki(ts − ns : ts + ns), ns = (len− 1) 2

(3)Ri =
1

a

a
∑

b=1

Rb
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Here, a symbolizes the total number of points in the 
ECG signal of the ith individual and Rb symbolizes the R 
wave of the bth point.

ii)	 QT interval

	 This feature represents the interval of time amid the 
among Q and T waves of the ith individual’s ECG, and 
the mean of all the computed QT intervals is used for 
finding the QT feature, which is calculated as,

(4)QTi = {QTb ; 1 ≤ b ≤ a

Fig. 1  Structural design of developed SSS-DRN for MI detection
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Here, Qb
i
 and Tb+1

i
 signifies the Q and T waves of the bth 

and (b+ 1)
th points, respectively of the ith individual.

iii)	RR interval

	 It denotes the duration of two subsequent R waves 
contained in the ECG signals of the ith individual, and 
the mean of the RR intervals of all the b points is cal-
culated to determine the RR feature, which is given 
by,

wherein, Rb
i  and Rb+1

i  signifies the R wave at the bth and 
(b+ 1)th points of the ith individual.

iv)	PR interval

	 PR interval refers to the time duration among the P 
wave at bth point with the R wave at (b+ 1)th point is 
called as PR interval. This features is obtained using 
the mean of PR interval at every points of the ECG 
signal, which is formulated as,

Here, Pb
i  symbolizes the P wave at the bth point of the 

ith individual.

v)	 PP interval 

	 It refers to the time duration among two subsequent 
P waves contained in the ECG signal and the PP fea-
ture can be obtained by taking the mean of the PP 
intervals based on every points of the ECG signal, 
which is expressed a

(5)QT =
1

a

a
∑

b=1

[

Qb
i − Tb+1

i

]

(6)RRi = {RRb ; 1 ≤ b ≤ a

(7)RR =
1

a

a
∑

b=1

[

Rb
i − Rb+1

i

]

(8)PRi = {PRb ; 1 ≤ b ≤ a

(9)PR =
1

a

a
∑

b=1

[

Pb
i − Rb+1

i

]

(10)PPi = {PPb ; 1 ≤ b ≤ a

Here, Pb
i
 and Pb+1

i
 signifies the P wave at the bth and (b+ 1)

th 
points of the ith individual.

The R peak, QT interval, RR interval, PR interval, and 
PP interval features have a dimension of 1× 1 , and are 
combined to get the medical feature with respect to the 
b points in the ith individual’s ECG signal, and is denoted 
by,

Here, Ai
1 signifies the feature vector obtained from the 

ith individual’s ECG signal, and has a size of [1× 5].

MKMFCC
This feature [18] is highly effective in identifying the sig-
nificant information in the ECG even in a degraded and 
noisy environment. It utilizes two kinds of kernel func-
tions for the Mel-frequency cepstral coefficient (MFCC) 
coefficient weighting. The process of extracting the 
MKMFCC feature is detailed as follows.

i)	 Pre-emphasis: This process minimizes low-frequency 
band amplitude and maximizes the high-frequency 
band amplitude, which is used for flattening the ECG 
signal and is expressed as,

Here,Y  is a constant, Z stipulates the output signal, 
Mi represents the filtered ECG signals, and c is the ECG 
sample.

ii)	 Framing: Here, the filtered ECG signal is subdivided 
into small B blocks of C samples, wherein each block 
has a length of 20–40 ms.

iii)	Hamming Windowing: This process integrates all the 
nearby frequencies of the ECG signal, and this is for-
mulated as,

wherein ω(c) represents the hamming window, formu-
lated as,

(11)PP =
1

a

a
∑

b=1

[

Pb
i − Pb+1

i

]

(12)Ai
1 =

{

Ri,QTi,RRi,PRd ,PPi
}

(13)Z(c) = Mi(c)− Y ∗Mi(c − 1)

(14)Z(c) = Mi(c) ∗ ω(c)
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iv)	Fast Fourier Transform (FFT): The ECG signal is sub-
jected to FFT in this phase, and the obtained block 
power spectrum is expressed as,

Further, the Discrete Fourier Transform (DFT) of the 
specific block is computed as,

wherein, f  specifies the DFT length.

v)	 Mel filter bank application: Here, the weight sum of 
the filter spectral components and the output bor-
der of the Mel scale filter bank are approximated for 
removing the signal frequencies, which is done by 
employing the triangular filter. The following expres-
sion stipulates the Mel filter bank,

Here, r indicates the rth frame of the ECG signal.

vi)	Filter bank Energy: Poer spectrum bonds the filter 
bank and the values are added up to a few coeffi-
cients. The following expression gives the energy of 
the filter bank.

wherein, Wc symbolizes the multiple kernel weighted 
function.

vii)	 Discrete Cosine Transform (DCT): It converts 
the log Mel spectrum into a spatial domain.

where,

(15)ω(c) = 0.56− 0.46

(

2πc

C − 1

)

; 0 ≤ c ≤ C − 1

(16)Dz(f ) =
1

C

∣

∣Mz
i (f )

∣

∣

2

(17)Mz
i (f ) =

C
∑

s=1

Z(c).e−j2πcf ; 1 ≤ f ≤ F

(18)D(r) = (cFFT + 1)× q(r)
/

Sample rate

(19)ε(r) =

c
2

∑

c=0

log |Mi(c)||Z(c)|

(

f
2π

C

)

×Wc

(20)ε(r) = ε(f )

After the DCT is applied, the cepstral coefficients are 
calculated using the following equation,

wherein, α(c) designates the MKMFCC feature.

viii)	 Compute Spectrum and energy value: To mini-
mize the noises and augment the recognition accu-
racy, the energy patterns and features are added up 
with the feature vector.

ix)	Cepstral normalization: To normalize cepstral coef-
ficients, the mean of all the coefficients are reduced 
and categorized with a variance, and the MKMFCC 
feature, thus obtained has a dimension of 1× 30 and 
is represented by A2.

Transform features
Most selective features in ECG signals are extracted by 
using the Haar transform to obtain the transform fea-
tures. Haar or Discrete Wavelet Transform (DWT) offers 
the fusion of both temporal and frequency-based data. A 
simple wavelet square-shaped sequence is considered to 
form the Haar wavelets, and this is expressed as,

Here, the mother wavelet function is specified as β(t) 
and the scaling function is given by,

The transform feature, thus generated is designated as 
A3 with dimension 1× 4.

Statistical features
Various statistical features [27], such as mean, variance, 
relative energy [40], relative amplitude [21], entropy 
[46], kurtosis, and information gain are also extracted 
from the filtered ECG signal, and these signals are 
exemplified below.

(21)ε(f ) =

{

ε(r) , f = fr
o , otherwise

(22)α(c) =
1

C ′

C ′−1
∑

c=1

ε(f ).ejf (2π/C
′)c

(23)β(t) =







1 , 0 ≤ t < t
2

−1 , t2 ≤ t < 1
0 , otherwise

(24)φ(t) =

{

1 , 0 ≤ t < 1
0 , otherwise
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Mean: By taking the average of ECG signal, the mean 
features are calculated and is expressed as,

Here, A4 denotes the mean,Mi(c) represents the filtered 
ECG signals at the cth sample, the total samples in the 
ECG signal is represented as C . The mean feature has a 
dimension of.
Variance: This feature is used to determine the amount 

of variation of the ECG signal from the mean value of the 
signal, and is expressed by,

The variance has a dimension of 1× 1.

Relative amplitude: Relative amplitude [21]of the 
ECG signal is defined as the ratio between the maxi-
mum amplitude of the ECG signal in one lead and 
the maximum amplitude in another lead, and is given 
by,

Here, m, n = 1 to C , dm and dn signifies the lead power 
in two leads. Relative amplitude is denoted by A6 and has 
a dimension 1× 50.

Relative energy: This feature [40] helps in differentiat-
ing the noises and ECG data within the signal. This 
feature is determined by estimating the energy of a 
band to the overall energy which is given as,

Here,εj indicates the energy level at the jth decompo-
sition level, and A7 signifies relative energy and has a 
dimension 1× 100.

Entropy: It measures the degree of uncertainty within 
the signal. It means the data related to complexities 
in the heart [46]. It is of the dimesion 1× 1 and is 
computed by,

(25)A4 =
1

C

C
∑

j=1

Mi(c)

(26)A5 =
1

C

C
∑

j=1

(Mi(c)− A4)
2

(27)A6 =
(dm − dn)

(dm + dn)
,m �= n

(28)A7 =
εj

∑

j εj

Kurtosis: This feature is implemented to measure the 
peak of the ECG signal, and is denoted by A9 with 
dimension 1× 1.
Information gain: The amount of information 
acquired from the ECG signals corresponding to the 
features is given by information gain, and is specified 
as A10 and has a size of 1× 1.

The features thus attained from the filtered ECG signals 
are combined to obtain the feature vector, which is repre-
sented as,

Here, A1 symbolizes the medical features, A2 gives the 
MKMFCC feature, A3 is the transform feature, A4 sig-
nifies the mean, A5 designates the variance, A6 denotes 
the relative amplitude, A7 represents the relative energy, 
A8 signifies entropy, A9 is kurtosis, and A10 signifies the 
information gain. The feature vector A generated has a 
size of 290× 147 , and is then applied to the next phase.

Data augmentation
In this process, the feature vector A is augmented to 
produce more information from the real ECG signals to 
overcome the possibility of inaccurate prediction and 
over fitting arising due to the minimal ECG samples. 
Data augmentation is accomplished with the help of 
three techniques, such as permutation, random genera-
tion, and re-sampling [41], which are elaborated on in the 
ensuing sections.

a	 Permutation

	 In general, the process of arranging various elements 
sequentially is known as Permutation [41]. If an 
orderly set is available, then permutation rearranges 
the elements. Permutation is the modest manner of 
randomly perturbing the events based on their tem-
poral location, and it is performed in two manners.

At first, permutation can be applied to the records 
entirely, by performing splitting all samples into D parts 
consisting of equal length. Later, the disturbed segments 
were assembled to produce a new recording of the sig-
nal. This procedure must be reiterated dH times, where 
dH represents the feature that is used to balance multi-
ple classes. Permutation has to be carried out, where the 
samples are not repeated. Permutation is employed in the 

(29)A8 =

C
∑

c=1

log
(

Mi(c)
2
)

(30)A = {A1,A2,A3,A4,A5,A6,A7,A8,A9,A10}
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second approach using the Window Slicing (WS) tech-
nique which is efficient in producing diversities.

b	 Random generation

	 From determining the highest and lowest magnitude, 
the samples are produced.

c	 Resampling
	 After completing the permutation task, the feature 

diversity is enhanced, but splicing the ECG signal 
and the random perturbation may destroy the mor-
phologies and order of the heartbeat. To tackle this 
issue, a re-sampling approach is used. Re-sampling 
not only enhances the sample diversity but also pre-
serves the physiological data and balances the sample 
count among the various classes.

The augmented feature set thus produced is denoted 
as V  , has a dimension of 20227× 14720227 ×147 , and is 
forwarded to the MI detection module for identification 
of MI.

MI detection using presented SSS‑DRN
The augmented feature set V  generated is fed into the 
DRN, where the DRN is employed to distinguish MI 
from the ECG signal. Here, the weight optimization of 
the DRN is carried out using the proposed SSS algorithm, 
where the SSS algorithm is formulated by adapting the 
SSD [52] algorithm based on the SMO [7] algorithm.

DRN
DRN [11] offers the advantage of performing classifica-
tion with high accuracy and minimal error. Further, it has 
the ability to tackle overfitting issues. Generally, increas-
ing the layer count of the classified results in enhanced 
classification accuracy but this may lead to gradient dis-
appearance, and this is effectually handled with the usage 
of residual blocks. The network is increased in its depth 
rather than the width, thereby achieving high training 
speed. DRN includes numerous layers that include aver-
age pooling (AvgPool) layers, convolutional (conv) layers, 
residual blocks, and linear classifiers. These layers are 
elaborated below.

i)	 Convolution layer: To reduce the free parameters in 
the training process and enhance the performance 
owing to the local receptive field and weight sharing, 
the convolution layer is employed. The two-dimen-
sional conv (Conv2 d) layer uses a kernel (series of fil-
ters) to process the input in a smaller area using local 
connectivity. It computes the output by sliding the 
eth filter over the input matrix and then performing 

dth product of the input and kernel, and this is math-
ematically represented as, 

Here, U indicates the output of the prior layer, L sig-
nifies the h× h kernel matrix, m, n signifies the input 
coordinates, u and v represents the location index of the 
kernel, and Lp denotes the kernel dimension of the pth 
neuron.

ii)	 Pooling layer: For minimizing the spatial dimensions 
of the feature map, the pooling layer is responsible 
and is effective in handling over fitting. The pool-
ing layer is generally injected into the consecutive 
convolutional layers. Here, the Maxpooling layer 
is employed to work on all slices and depths of the 
input feature map. The maxpooling layer offers sim-
plicity in processing and higher efficiency and is 
employed to choose the maximum input value and 
minimizes the feature map dimensions.

iii)	Activation function: The non-linear and complex 
features in the input are learned using a non-linear 
activation function, which also enhances the non-
linearity associated with the obtained features. The 
activation function used here is Rectified linear unit 
(ReLU), and is represented by the expression given 
below,

iv)	Batch normalization (Batch Norm): Generally, in DL 
approaches the entire training data is separated into 
small groups called mini-batches and the archetype 
is trained using the mini-batches to attain a balance 
among computational burden and convergence. 
However, the training speed and stability are reduced 
due to the interior covariate shift occurring due to 
the mini-batches. Hence, to overcome this problem, 
Batch Norm is used, which performs several activa-
tion adjustments and scaling to overcome the inte-
rior covariate shift.

(31)Conv2d(Y ) =

h−1
∑

u=0

h−1
∑

v=0

Lu,v •U(m+u),(n+v)

(32)Conv1d(U) =

Cin−1
∑

p=0

Lp ∗ U

(33)ReLU(U) =

{

0 ; U < 0

U ; U ≥ 0
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v)	 Residual blocks: The residual blocks refer to the 
two conv layers that is connected via a shortcut. It 
encompasses a direct link between the input and out-
puts, in case both the inputs and output exhibit the 
same size. While the sizes are varied, a dimension 
matching parameter is applied for matching the sizes, 
which is represented as,

Here, I indicates the output, and U is the input of the 
residual block, �U is the dimension matching factor, and 
k is the mapping function.

vi)	Linear classifier: After the conv layer performs the 
extraction and reduction of features, classification 
is performed by the linear classifier, which encom-
passes a Fully Connected (FC) layer and a soft max 
function. The output obtained is given by,

Here, κ represents the bias. Figure 2 portrays the archi-
tecture of the DRN.

Devised SSS algorithm for the weight optimization 
of the DRN
The efficiency of the DRN in MI identification can be 
enhanced by using the SSS algorithm in order to adjust 
the weight parameters of the DRN. Here, the SSS algo-
rithm developed by combining SSD [52] algorithm with 
SMO [7] algorithm. The SSD algorithm is motivated by 
the numerous types of evolutionary optimization algo-
rithms and is named based on the stochastic explora-
tion that resembles the paths taken by the ski-drivers 

(34)I = k(U)+U

(35)I = k(U)+ �UU

(36)I = �U + κ

downhill. SSD algorithm is based on several parameters, 
such as agent position, personal best location, mean 
global best location, and agent velocity. The SMO algo-
rithm, on the other hand, is motivated by the scavenging 
characteristics of the spider monkeys, which search for 
food based on fission -fusion characteristics. The spider 
monkeys divide into numerous groups and search for 
food in their home region. Here, the group is guided by 
the female monkey, who also holds the responsibility of 
identifying the food sources. If the food search is unpro-
ductive, the group is further divided into small groups. 
While food is in surplus, all the groups combine into a 
large group. Thus, the devised SSS algorithm achieved 
enhanced exploration and exploitation capabilities from 
the combination of the SMO and the SSD algorithm. The 
detailed evaluation steps are given as,

Step 1: initialization
The primary process is to initialize of the position of the 
agents, which can be represented as,

wherein, y indicates the overall number of agents and Nx 
represents the position of the xth agent, and all agents are 
initialized with a corresponding velocity ( Ox).

Step 2: Error determination
The fitness function of the agents is then calculated, the 
best solution is obtained by finding the agent with the 
lowest fitness and hence, the minimization problem is 
considered. Hence, the fitness is given by Mean Square 
Error (MSE), which is calculated by,

Here, I∗j  and Ij signifies the expected and the generated 
outcome of the DRN, and ρ is the sample count.

(37)N = {N1,N2, . . . ,Nx, . . .Ny}

(38)Fit =
1

ρ

ρ
∑

j=1

[

I∗j − Ij

]2

Fig. 2  Architecture of DRN



Page 12 of 28A et al. BMC Cardiovascular Disorders          (2025) 25:371 

Step 3. Determine the previous best location and the mean 
global solution
Once the fitness is computed, the agents are sorted based 
on their fitness, and the previous best location and the 
mean global solution are determined. The mean global 
solution is computed using the following equation.

Here, Na,Nb and Nc are the three best solutions, and k 
designates the present iteration.

Step 4: Determine the update equation
The position of the agents is then modified considering 
the velocity of the agents, and is given by,

Here,

wherein, o1 and o2 are uniformly produced arbitrary 
number in having values in the range [0, 1], l is the factor 
that is employed to ensure trade off among exploitation 
and exploration,gkx  represents the best solution of the xth 
agent.

Considering o2 ≤ 0.5 , we get,

Applying Eq. (42) in Eq. (40),

From the SMO algorithm [7],

Here, o(0, 1) and o(−1, 1) are uniformly produced arbi-
trary number in having values in the range [0, 1] and 
[−1, 1] respectively, Glxw indicates the wth dimension of 
the global leader location, and Smk

xw and Smk
tw refer to the 

wth dimension of the tth and xth spider monkey in the kth 
iteration.

(39)gkx =
Na + Nb + Nc

3

(40)Nk+1
x = Nk

x + Ok
x

(41)Nt
x =







l sin(o1)(G
k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x ) ; if o2 ≤ 0.5

l cos(o1)(G
k
x − Nk

x )+ cos(o1)(g
k
x − Nk

x ) ; if ot2 > 0.5

(42)Ot
x = l sin(o1)(G

k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )

(43)Nk+1
x = Nk

x + l sin(o1)(G
k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )

(44)
Sm

k+1
xw = Sm

k
xw + o(0, 1)×

(

Glw − Sm
k
xw

)

+ o(−1, 1)×

(

Sm
k
tw − Sm

k
xw

)

Now, consider Smk+1
xw = Nk+1

x  , Smk
x = Nk

x  , Glw = Glt , 
and Smk

tw = Smk
t  , the Eq. (44) can be rephrased as,

Applying Eq. (47) in Eq. (43),

Here, Nk+1
x  gives the position of the xth agent in the 

next iteration and the above equation is employed for 
updating the location of the agent.

Step 5: Feasibility evaluation
After updating the location of the agent, the feasibility of 
the revealed solution is evaluated by computing the fit-
ness based on Eq. (38), to find the agents with minimal 
fitness.

Step 6: Terminate
The above process is reiterated till the stopping criteria 
are achieved, the pseudo-code of the proposed SSS algo-
rithm is displayed in algorithm 1.

(45)N
k+1
x = N

k
x + o(0, 1)×

(

Glt − N
k
x

)

+ o(−1, 1)×

(

Sm
k
t − N

k
x

)

(46)
N

k+1
x = N

k
x [1− o(0, 1)− o(−1, 1)]+ o(0, 1)× Glt + o(−1, 1)× Sm

k
t

(47)Nk
x =

Nk+1
x − o(0, 1)× Glt − o(−1, 1)× Smk

t

[1− o(0, 1)− o(−1, 1)]

(48)

Nk+1
x =

[

Nk+1
x − o(0, 1)× Glt − o(−1, 1)× Smk

t

[1− o(0, 1)− o(−1, 1)]

]

+ l sin(o1)(G
k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )

(49)

Nk+1
x −

Nk+1
x

[1− o(0, 1)− o(−1, 1)]
= l sin(o1)(G

k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )

−

[

o(0, 1)× Glt + o(−1, 1)× Smk
t

[1− o(0, 1)− o(−1, 1)]

]

(50)

Nk+1
x [1− o(0, 1)− o(−1, 1)]− Nk+1

x

[1− o(0, 1)− o(−1, 1)]

=







�

l sin(o1)(G
k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )

�

[1− o(0, 1)− o(−1, 1)]

−

�

o(0, 1)× Glt + o(−1, 1)× Smk
t

�







[1− o(0, 1)− o(−1, 1)]

(51)Nk+1
x =

((

o(0, 1)× Glt + o(−1, 1)× Smk
t

)

−
(

l sin(o1)(G
k
x − Nk

x )+ sin(o1)(g
k
x − Nk

x )
)

[1− o(0, 1)− o(−1, 1)]

)

o(0, 1)+ o(−1, 1)
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Algorithm 1. Pseudo code of the proposed SSS algorithm

Thus, by combining the SMO, and the SSD algorithm, 
the devised SSS algorithm achieved enhanced explora-
tion and exploitation capabilities. Further, the weight 
optimization of the DRN using the devised SSS algorithm 
effectively enhanced the MI identification process.

Results and discussion
The experiment and the outcomes obtained during the 
implementation of the presented SSS-DRN approach for 
MI detection are elucidated here. Furthermore, the effec-
tiveness of the developed scheme is verified with respect 
to various metrics, in comparison to the available MI 
detection schemes.

Experimental set‑up
The presented SSS-DRN approach for MI detection is 
realized by implementation in a Python environment.

Dataset description

Dataset 1: The Physikalisch-Technische Bundesan-
stalt (PTB) database [42] https://​www.​physi​onet.​org/​
conte​nt/​ptbdb/1.​0.0 is employed in this work, which 
is one of the most extensively utilized datasets in the 
research addressing MI identification. It comprises 
549 records of ECG signals acquired from 290 indi-
viduals, having ages between 17 and 87. Every indi-
vidual is indicated by a total of one to five records, 
measured using the traditional 12 leads with three 
Frank lead ECGs. Every signal is digitized at a rate 
of 1000 samples per second. Out of the 290 subjects, 
148 subjects have MI.
Dataset 2: The MIT-BIH Arrhythmia Database [53] 
(https://​www.​kaggle.​com/​datas​ets/​taejo​ongyo​on/​
mitbit-​arrhy​thmia-​datab​ase) contains 48 half-hour 
excerpts of two-channel ambulatory ECG record-

ings. Among these 48 recordings, 23 of them were 
selected randomly from the 4000 24-h ambulatory 
ECG recording set, which is gathered from the mixed 
population of inpatients (nearly 60%) and outpatients 
(40%). The balance of 25 recordings are selected from 
less common, which include arrhythmias in the mini-
mum random sample.

Evaluation measures
Based on measures, like accuracy, sensitivity and 
specificity, the devised SSS-DRN for MI identification 
undergoes the process of evaluation that is explicated 
below.

i)	 Testing Accuracy

It is used to determine the number of ECG signals that 
are identified precisely by the DRN, and is formulated as,

Here, tp specifies the total cases of ECG signals which 
are identified correctly with MI, tn is the count of the 
ECG signals categorized as normal, fn indicates the count 
of ECG records branded incorrectly as normal, and fp 
symbolizes the normal ECG signals that are identified as 
MI.

ii)	 Sensitivity

True Positive Rate (TPR) or sensitivity measures the 
count of ECG signals correctly identified with MI to the 
total number of ECG signals identified with MI, which is 
given by,

(52)Acc =
tp + tn

tp + tn + fp + fn

https://www.physionet.org/content/ptbdb/1.0.0
https://www.physionet.org/content/ptbdb/1.0.0
https://www.kaggle.com/datasets/taejoongyoon/mitbit-arrhythmia-database
https://www.kaggle.com/datasets/taejoongyoon/mitbit-arrhythmia-database
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iii)	Specificity

It is computed by determining the ratio of the ECG sig-
nals which is precisely identified as normal to the total 
number of ECG signals identified as normal. Specificity 
or True Negative Rate (TNR) is calculated based on the 
given expression

(53)Sens =
tp

tp + fn

(54)Spec =
tn

tn + fp

Experimental results
Figure  3 shows the experimental results obtained by 
the SSS-DRN for MI detection. Here, Fig.  3 a) shows 
the input images, Fig.  3 b) denotes the filtering outputs 
obtained by the median filter.

Performance evaluation
Performance evaluation explicates the performance anal-
ysis of the formulated SSS-DRN for MI detection based 
on various parameters, considering different epochs, 
which is presented in Fig.  4. In Fig.  4 (a), the examina-
tion of the proposed SSS-DRN based on testing accuracy 
by altering the learning set is portrayed. The testing accu-
racy of the introduced SSS-DRN with a 70% learning set 
is 0.807, 0.810, 0.841, 0.846, and 0.888, corresponding to 

Fig. 3  Experimental results a) Input b) Filtered signal using Median filter
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20, 40, 60, 80, and 100 epochs. Figure 4 (b) displays the 
sensitivity-based evaluation of the developed SSS-DRN. 
At 80% learning set, the devised SSS-DRN computed a 
sensitivity of 0.831, 0.840, 0.852, 0.856, and 0.905, with 
20, 40, 60, 80, and 100 epochs. The assessment of the pre-
sented SSS-DRN scheme for MI detection considering 
specificity is described in Fig.  4 (c). The value of speci-
ficity measured by the SSS-DRN with 90% learning set 
is 0.818 with 20 epochs, 0.838 with 40 epochs, and 0.849 
with 60 epochs, 0.863 with 80 epochs, and 0.900 with 100 
epochs.

Algorithmic methods
In this work, the SSS algorithm is devised for the weight 
optimization of the DRN. The effectiveness of the SSS 
algorithm is investigated by comparing it with the exist-
ing algorithms, such as Particle Swarm Optimization 

(PSO) [20], Genetic Algorithm [29], Water Cycle Algo-
rithm (WCA) [17], Smart Flower Optimization Algo-
rithm (SFOA) [45], SSD [52], and SMO [7].

Algorithmic evaluation
The SSS algorithm developed in this work is correlated 
with the conventional algorithms here. Figure  5 pre-
sents the algorithmic assessment of the developed SSS 
algorithm by considering various parameters based on 
different iterations. In Fig. 5 (a), the formulated SSS algo-
rithm is investigated considering the testing accuracy. 
With 40 iterations, the testing accuracy calculated by the 
various algorithms is 0.727 for PSO + DRN, 0.738 for GA 
+ DRN, 0.757 for WCA + DRN, 0.776 for SFOA + DRN, 
0.825 for SSD + DRN, 0.826 for SMO + DRN, and 0.869 
for the devised SSS + DRN. Figure  5 (b) portrays the 

Fig. 4  Performance assessment of the presented SSS-DRN considering a) testing accuracy, b) sensitivity, and c) specificity
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examination of the developed SSS algorithm concerning 
the sensitivity parameter. The value of sensitivity meas-
ured by the algorithms, like PSO + DRN, GA + DRN, 
WCA + DRN, SFOA + DRN, SSD + DRN, SMO + DRN, 
and the developed SSS + DRN is 0.770, 0.782, 0.802, 
0.810, 0.835, 0.841, and 0.882, with 60 iterations. The 
investigation of the presented SSS algorithm based on the 
specificity is demonstrated in Fig. 5 (c). At 100 iterations, 
the different algorithms calculated specificity of 0.777 
for PSO + DRN, 0.790 for GA + DRN, 0.810 for WCA 
+ DRN, 0.830 for SFOA + DRN, 0.840 for SSD + DRN, 
0.855 for SMO + DRN, and 0.891 for the developed SSS 
+ DRN. These observations show that the presented SSS 
algorithm has achieved enhanced performance.

Comparative techniques
The efficacy of the developed SSS-DRN is analysed with 
Minimum Skewness-Based Myocardial Infarction Detec-
tion Model (MSMIDM) [51], Support Vector Machine 
classification using the grasshopper optimization algo-
rithm (SVM‑GOA) [44], CNN [1], kNN [36], Deep NN 
[30], ML-ResNet [25], and Hybrid approach of ResNet 
and Vision Transformer (ViT) models (hybrid ResNet-
ViT model) [54].

Comparative assessment
The comparative assessment of SSS-DRN based on dif-
ferent parameters, considering k-value and learning set 
for dataset 1 and dataset 2 are demonstrated as follows,

Fig. 5  Algorithmic evaluation of the SSS algorithm based on dataset 1 a) testing accuracy, b) sensitivity, and c) specificity
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Evaluation with dataset 1

a)	 Analysis considering k-value

	 The efficiency of the SSS-DRN is evaluated based on 
k-value in this section by comparing it with the con-
ventional schemes based on different parameters and 
it is demonstrated in Fig. 6. The comparative exami-
nation of the developed SSS-DRN based on testing 
accuracy is displayed in Fig. 6 (a). With k-value of 8, 
the prevailing schemes, like MSMIDM, SVM-GOA, 
CNN, kNN, Deep NN, ML-Res Net, and hybrid 
ResNet-ViT model achieved testing accuracies of 
0.767, 0.779, 0.799, 0.826, 0.838, 0.873, and 0.881 cor-
respondingly, while the presented SSS-DRN com-
puted a high testing accuracy of 0.899. In Fig. 6 (b), 
the sensitivity-oriented investigation of the SSS-DRN 
is displayed. The sensitivity calculated by the pro-

posed SSS-DRN is 0.893, while the traditional meth-
ods obtained a sensitivity of 0.774 for MSMIDM, 
0.786 for SVM-GOA, 0.806 for CNN, 0.819 for kNN, 
0.838 for Deep NN, 0.867 for ML-Res Net, and 0.875 
for hybrid ResNet-ViT model, with k-value as 7. 
This shows that the developed SSS-DRN produced 
a variation of sensitivity value by 13.36%, 12.01%, 
9.76%, 8.30%, 6.22%, 2.98%, and 2%. Figure 6 (c) illus-
trates the examination of the SSS-DRN with respect 
to specificity. The MI detection schemes, such as 
MSMIDM, SVM-GOA, CNN, kNN, Deep NN, ML-
Res Net, hybrid ResNet-ViT model, and SSS-DRN 
measured specificity values of 0.751, 0.763, 0.783, 
0.816, 0.836, 0.858, 0.871, and 0.889, for k-value of 
6. This reveals that the devised SSS-DRN attained a 
high specificity with a variation of 15.46%, 14.14%, 
11.93%, 8.20%, 5.94%, 3.52%, and 2% with the values 
attained by the available schemes.

Fig. 6  Comparative assessment of the proposed SSS-DRN technique concerning k-value with respect to a) accuracy, b) sensitivity, and c) specificity



Page 18 of 28A et al. BMC Cardiovascular Disorders          (2025) 25:371 

b)	 Evaluation considering the learning set

	 The assessment of the SSS-DRN model based on the 
learning set is given in Fig. 7. The analysis based on 
testing accuracy is depicted in Fig. 7 (a). The testing 
accuracy of the introduced SSS-DRN is 0.896, with a 
learning set of 60%, whereas the existing MI detec-
tion techniques, such as MSMIDM, SVM-GOA, 
CNN, kNN, Deep NN, ML-Res Net, and hybrid 
ResNet-ViT model attained testing accuracies of 
0.754, 0.765, 0.785, 0.796, 0.830, 0.877, and 0.878, 
respectively. The devised scheme attained a variation 
of 15.85%, 14.53%, 12.34%, 11.10%, 7.36%, 2.12%, and 
2% than the prevailing techniques. The assessment of 
the presented SSS-DRN concerning the sensitivity 

parameter is shown in Fig. 7 (b). The value of sensi-
tivity calculated by the presented SSS-DRN is 0.904, 
with 70% learning set, which is higher than the sen-
sitivity of 0.774, 0.786, 0.806, 0.809, 0.846, 0.885, and 
0.886 computed by the schemes such as MSMIDM, 
SVM-GOA, CNN, kNN, Deep NN, ML-Res Net, 
and hybrid ResNet-ViT model by 14.45%, 13.12%, 
10.89%, 10.54%, 6.40%, 2.09%, and 2%, respectively. 
The specificity-based assessment of the developed 
SSS-DRN MI detection scheme is displayed in Fig. 7. 
With 80% learning set, the different MI identification 
techniques, like MSMIDM, SVM-GOA, CNN, kNN, 
Deep NN, ML-Res Net, hybrid ResNet-ViT model, 
and developed SSS-DRN computed a specificity of 
0.784, 0.796, 0.816, 0.838, 0.871, 0.895, 0.9, and 0.918. 

Fig. 7  Comparative assessment of the devised SSS-DRN concerning learning set with respect to a) accuracy, b) sensitivity, and c) specificity
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This reveals that the presented SSS-DRN produced 
an enhancement in performance by 14.64%, 13.31%, 
11.09%, 8.72%, 5.10%, 2.47%, and 2%.

Evaluation with dataset 2

a)	 assessment regarding K-value

	 Figure  8 represents the evaluation of the SSS-DRN 
model based on dataset 2. The analysis regard-
ing testing accuracy is depicted in Fig.  8 a). When 
considering the k value as 9, the devised SSN-DRN 
model obtained an accuracy of value 0.892. The exist-
ing models like MSMIDM, SVM-GOA, CNN, kNN, 
Deep NN, ML-Res Net, and hybrid ResNet-ViT 

models are 0.768, 0.780, 0.800, 0.820, 0.846, 0.870, 
and 0.874. The sensitivity evaluation of the proposed 
SSN-DRN model is depicted in Fig. 8 b). With k value 
9, the sensitivity values noted by the MSMIDM, 
SVM-GOA, CNN, kNN, Deep NN, ML-Res Net, 
hybrid ResNet-ViT model, and devised SSN-DRN 
are 0.776, 0.788, 0.808, 0.827, 0.850, 0.870, 0.878, and 
0.896, respectively. Figure  8 c) depicts the assess-
ment regarding specificity. The specificity value of 
the devised SSN-DRN is 0.898, while the traditional 
models like MSMIDM, SVM-GOA, CNN, kNN, 
Deep NN, ML-Res Net, and hybrid ResNet-ViT 
model noted specificity values of 0.778, 0.790, 0.810, 
0.832, 0.857, 0.873, and 0.880, respectively.

b)	 Evaluation based on the learning set

Fig. 8  Comparative analysis of the devised SSS-DRN based on k value concerning dataset 2 a) accuracy, b) sensitivity, and c) specificity
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	 The efficiency of the SSS-DRN is evaluated based on 
the learning set and the comparison of the devised 
model with conventional schemes is shown in Fig. 9. 
The comparative examination of the developed 
SSS-DRN based on testing accuracy is displayed in 
Fig.  9(a). when 90% of training data the prevailing 
schemes, like MSMIDM, SVM-GOA, CNN, kNN, 
Deep NN, ML-Res Net, and hybrid ResNet-ViT 
model achieved testing accuracies of 0.780, 0.792, 
0.813, 0.835, 0.861, 0.887, and 0.889 correspondingly, 
while the presented SSS-DRN computed a high test-
ing accuracy of 0.907. In Fig. 9 (b), the sensitivity of 
the SSS-DRN is displayed. The sensitivity calculated 
by the proposed SSS-DRN is 0.912, while the tradi-
tional methods obtained a sensitivity of 0.784 for 
MSMIDM, 0.796 for SVM-GOA, 0.817 for CNN, 

0.837 for kNN, 0.867 for Deep NN, 0.884 for ML-Res 
Net, and 0.894 for hybrid ResNet-ViT model when 
considering 90% training data. Figure  9 (c) illus-
trates the examination of the SSS-DRN with respect 
to specificity. The MI detection schemes, such as 
MSMIDM, SVM-GOA, CNN, kNN, Deep NN, ML-
Res Net, hybrid ResNet-ViT model, and SSS-DRN 
measured specificity with a range 0.785, 0.797, 0.818, 
0.846, 0.871, 0.887, 0.898, and 0.917 for 90% training 
data.

Comparative discussion
The efficacy of the devised SSS-DRN is investigated 
in this section by comparing it with the conventional 
MI identification methods, like MSMIDM, SVM-
GOA, CNN, kNN, Deep NN, ML-Res Net, and hybrid 

Fig. 9  Comparative analysis of the devised SSS-DRN based on learning set concerning dataset 2 a) accuracy, b) sensitivity, and c) specificity
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ResNet-ViT model and this is displayed in Table  1. The 
analysis is accomplished on the basis of various evalua-
tion measures considering various values of k-value and 
learning set. Table 1 reveals the values of the three per-
formance measures utilized in the analysis corresponding 
to a k-value of 9 and a learning set of 90%. The developed 
SSS-DRN obtained testing accuracy of 0.916, due to the 
utilization of numerous discriminative features dur-
ing the identification process. Further, a higher sensitiv-
ity value of 0.921 is found to have been measured by the 
devised SSS-DRN owing to the use of DRN for classifi-
cation. Moreover, the weight optimization of DRN based 
on the proposed SSS algorithm has contributed to a max-
imal specificity value of 0.926.

Ablation study
The ablation study refers to the removal of certain com-
ponents from the model in order to analyse the impact 
on the model’s performance to understand the contri-
bution of removed component. Figure  10 elucidates the 
ablation assessment of the devised SSS-DRN model con-
cerning accuracy. The evaluation with respect to dataset 
1 is interpreted in Fig. 10 a). With 90% training data, the 
proposed SSS-DRN model obtained testing accuracy val-
ues of 0.916 and the accuracy values noted by the SSS-
DRN without pre-processing, SSS-DRN without feature 
extraction, SSS-DRN without image augmentation, and 
DRN are 0.870, 0.888, 0.898, and 0.9067, respectively. 
Figure 10 b) represents the ablation study of the devised 

Table 1  Comparative discussion

Datasets Variations Metrics MSMIDM SVM-GOA CNN kNN Deep NN ML-ResNet hybrid 
ResNet-ViT 
model

Proposed 
SSS-DRN

Dataset 1 k-value Testing Accuracy 0.775 0.787 0.808 0.829 0.854 0.878 0.883 0.901

Sensitivity 0.784 0.796 0.816 0.836 0.859 0.879 0.887 0.905

Specificity 0.786 0.798 0.819 0.841 0.866 0.882 0.889 0.907

Learning set Testing Accuracy 0.788 0.800 0.821 0.843 0.870 0.896 0.898 0.916
Sensitivity 0.792 0.804 0.825 0.845 0.875 0.893 0.903 0.921
Specificity 0.793 0.805 0.826 0.854 0.880 0.896 0.908 0.926

Dataset 2 k-value Testing Accuracy 0.768 0.780 0.800 0.820 0.846 0.870 0.874 0.892

Sensitivity 0.776 0.788 0.808 0.827 0.850 0.870 0.878 0.896

Specificity 0.778 0.790 0.810 0.832 0.857 0.873 0.880 0.898

Learning set Testing Accuracy 0.780 0.792 0.813 0.835 0.861 0.887 0.889 0.907

Sensitivity 0.784 0.796 0.817 0.837 0.867 0.884 0.894 0.912

Specificity 0.785 0.797 0.818 0.846 0.871 0.887 0.898 0.917

Fig. 10  Ablation assessment of the devised SSS-DRN model based on accuracy a) Dataset 1 and b) Dataset 2
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model for dataset 2. The testing accuracy reached by the 
SSS-DRN without pre-processing, SSS-DRN without fea-
ture extraction, SSS-DRN without image augmentation, 
DRN, and SSS-DRN model are 0.861, 0.879, 0.889, 0.897, 
and 0.907, respectively concerning the training data as 
90%.

Analysis by varying noise
Figure  11 depicts the assessment by considering the 
impact of noise. The analysis regarding dataset 1 is pro-
vided in Fig. 11 a). By considering the noise level as 0.06, 
the conventional schemes and the devised SSS-DRN 
model obtained testing accuracy of 0.756, 0.768, 0.788, 

0.809, 0.835, 0.860, 0.862, and 0.879. This shows that 
the performance gain observed by the devised model 
is 13.96%, 12.61%, 10.37%, 7.95%, 5%, 2.21%, and 2% 
improved than the traditional models like MSMIDM, 
SVM-GOA, CNN, kNN, Deep NN, ML-Res Net, and 
hybrid ResNet-ViT model. The analysis of the devised 
moel by varying noise levels for dataset 2 is inter-
preted in Fig.  11 b). The testing accuracy reached by 
the MSMIDM, SVM-GOA, CNN, kNN, Deep NN, ML-
Res Net, and hybrid ResNet-ViT models is 0.760, 0.772, 
0.792, 0.811, 0.840, 0.857, and 0.867 whereas the devised 
model obtained testing accuracy values of 0.885 for the 
noise level 0.06.

Fig. 11  Analysis of the devised SSS-DRN by varying noise levels a) Dataset 1, b) Dataset 2

Fig. 12  Analysis of the devised SSS-DRN by varying features a) Dataset 1, b) Dataset 2
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Assessment by varying features
The analysis by considering different features of the SSS-
DRN model is depicted in Fig. 12. The impact of features 
for dataset 1 of the devised scheme is elucidated in Fig. 12 
a). with 90% of data, the SSS-DRN withs signal features, 
SSS-DRN with transform features, SSS-DRN with medi-
cal features, SSS-DRN with statistical features, and the 
devised model SSS-DRN (with all features) obtained 
testing accuracy of 0.833, 0.843, 0.861, 0.870, and 0.916. 
Figure 12 b) depicts the assessment by varying different 
features for dataset 2. The SSS-DRN with signal features, 
SSS-DRN with transform features, SSS-DRN with medi-
cal features, SSS-DRN with statistical features, and the 
devised model SSS-DRN (with all features) reached test-
ing accuracy of 0.820, 0.829, 0.847, 0.856, and 0.901 for 
the training data 90%.

Confusion matrix
A confusion matrix represents a table that is used for 
accessing the performance of the classification model 
based on the comparison of predicted and true labels. 
Here, the actual classes are provided in rows and the pre-
dicted classes are represented in columns. It provides the 
counts of True positives (TP), true negatives (TN), False 
positives (FP), and false negatives (FN). Here, the cell is 
filled by the count of data points that belong to the com-
bination of actual and predicted classes. Here, the correct 
predictive positive cases by the model are indicated as TP, 
the correct predicted negative cases are represented in 
TN, FP indicates the incorrectly predicted positive cases, 
and the incorrectly predicted negative cases are signi-
fied as FN. Figure 13 represents the confusion matrix of 

dataset 1 and dataset 2. Figure 13 a) shows the confusion 
matrix of dataset 1. The accuracy value noted by Dataset 
1 is 91.56%. Here, the total samples in TP are 9456, TN 
is 9546, FP is 1051, and FN is 700. The confusion matrix 
of dataset 2 is provided in Fig. 13 b). Here, the accuracy 
value is 90.67%. Also, the samples in TP are 8456, TN is 
8765, FP is 878, and FN is 895.

Convergence graph
The convergence graph helps to analyse how well the 
devised algorithm performs over the changing iterations. 
It identifies whether the obtained solution is a feasible 
good solution or it stuck to local optima thereby provid-
ing the details about the solution whether it is stable or 
not. Figure  14 represents the convergence graph of the 
devised SSS-DRN. When the iteration is 100, the fitness 
obtained by the devised model is 0.011. The faster con-
vergence with low fitness value signifies that the devised 
algorithm is effective in obtaining optimal solutions.

Receiver operating characteristic (ROC) curve analysis
The ROC curve is the graphical model that is used for 
analyzing the performance of the binary classifier of 
the model at different threshold values. The ROC curve 
is provided by calculating the TPR and FPR are each 
threshold setting. It indicates the trade-off between the 
sensitivity and specificity of the classifier. Figure 15 shows 
the ROC curve analysis of the devised scheme. Figure 15 
a) shows the ROC curve assessment for dataset 1. When 
the FPR is considered as 0.5, the TPR values noted by the 
MSMIDM, SVM-GOA, CNN, kNN, Deep NN, ML-Res 
Net, hybrid ResNet-ViT model and the devised SSS-DRN 

Fig. 13  Confusion matrix of the devised SSS-DRN a) Dataset 1 b) Dataset 2
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model are 0.781, 0.829, 0.815, 0.846, 0.855, 0.865, 0.861, 
and 0.885. Figure 15 b) shows the ROC curve evaluation 
based on dataset 2. With FPR value 0.5, the TPR reached 
by the MSMIDM, SVM-GOA, CNN, kNN, Deep NN, 
ML-Res Net, hybrid ResNet-ViT model, and SSS-DRN 
are 0.765, 0.813, 0.789, 0.829, 0.838, 0.847, 0.842, and 
0.868, respectively. The high TPR values noted by the 
devised model that the correctly identify the positive 
cases.

Computational complexity evaluation
The computational complexity refers to the total time 
required by the devised model to complete a particu-
lar time. Table  2 shows the computational time of the 
devised SSS-DRN model. The devised method obtained 
a minimum time of 7.0959 s for dataset 1 and 8.0457 s for 
dataset 2. From the analysis, the devised model provides 
quick decisions as the total time obtained by the devised 
model is minimal compared to other models. This signi-
fies that the model is highly scalable and this makes the 
model handle larger datasets.

Fig. 14  Convergence analysis of the devised SSS-DRN model

Fig. 15  ROC Curve Analysis of the devised SSS-DRN model a) Dataset 1 b) Dataset 2
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Analysis of variance (ANOVA) analysis
ANOVA test is a statistical test employed to assess the 
difference between the mean of more than two groups. 
The ANOVA effectively handles multiple factors and 
their connections thereby providing a robust way for 
understanding the intricate relationship. Table  3 shows 
the ANOVA analysis of the devised scheme. Here, the 
first column represents the independent variables along 
with the model error. The Df column signifies the degree 
of freedom for the independent variable and the residu-
als. The sum of squares indicates the total variation 
among the group means and the overall mean repre-
sented by the variable. The high value of F represents that 
there is a larger difference between the group of means 
compared to the variations within the group. The p-value 
noted by the devised model is less than 0.05, which rep-
resents that the devised model rejects the null hypothesis 
and signifies that there is a significant difference among 
the group means.

Table 2  Computational Complexity

Method Time (sec)

Dataset 1 Dataset 2

MSMIDM 14.5968 15.4869

SVM-GOA 13.0957 14.4699

CNN 12.5097 13.9569

KNN 11.9865 12.0095

Deep NN 9.0947 10.0095

ML-Res Net 8.0959 9.4596

Hybrid ResNet-ViT model 8.0123 9.1245

Proposed SSS-DRN 7.0959 8.0457

Table 3  ANOVA Analysis

Sum of squares Degrees of 
freedom (Df)

F P-value

C 0.145764 4 17.56752 0.000258

Residual 0.213424 120

Fig. 16  SHAP visualization of the devised SSS-DRN model a) Waterfall plot b) summary plot
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SHAP (SHapley Additive exPlanations) visualization
The SHAP model is the visual way of explaining the 
output of the devised model. It uses a game-theoretic 
approach and measures how each feature contributes to 
the final output. In DL schemes, SHAP values show how 
each feature affects each final prediction, the significance 
of each feature compared to others, and the model’s reli-
ance on the interaction between features. The SHAP 
measures the importance of each feature in the model’s 
prediction based on Shapley values. Figure  16 provides 
the SHAP visualization of the devised SSS-DRN model. 
Figure  16 a) shows the waterfall plot of the devised 
scheme. Here, the contribution of each feature in specific 
prediction is illustrated in this waterfall plot. Here, the 
starting point specifies the base value and the red bars 
indicate positive contributions, which increases the pre-
dicted value. Figure 16 b) represents the summary plot of 
the devised scheme. Here, the feature names with their 
importance from top to bottom are represented in the 
Y-axis and the SHAP values are indicated in the X-axis. 
The row of data obtained from the original dataset is rep-
resented in point.

Conclusion
In this research, the SSS-DRN model is implemented for 
MI detection from ECG. MI is considered as a life-threat-
ening disease that can significantly cause total death or 
damage to the heart and hence requires to be identified 
as early as possible. Here, a novel DL-based technique 
is devised using DRN, whose weight parameters are 
adapted using the developed SSS algorithm. The ECG 
signals are initially subjected to a median filter, followed 
by feature extraction, wherein multiple discriminative 
features are determined. The feature vector produced is 
then forwarded to the data augmentation phase, where 
the feature is increased by permutation, random gen-
eration, and re-sampling. Finally, MI identification is 
accomplished utilizing the devised SSS-DRN. Here, the 
SSS algorithm is formulated based on the SSD and SMO 
algorithms. Moreover, the developed SSS-DRN is inves-
tigated for efficiency considering metrics, like accuracy, 
sensitivity, and specificity and obtained values of 0.916, 
0.921, and 0.926. The devised model could be embedded 
in real-time clinical settings like hospital ECG machines, 
portable wearable ECG monitors, and mobile health 
applications. The devised scheme highly prevents over-
fitting and computational issues, which makes it highly 
suitable for real-time clinical systems. This improves the 
clinical decision-making process with increased patient 
outcomes. The devised model cannot be deployed in 
real-time applications and the devised model takes a long 
time to differentiate distinct heartbeat from ECG that 
contains noise. Although the devised model performs 

well still the computational cost of the DRN remains a 
major challenge of the model. Further research directions 
include the utilization of advanced features to augment 
the efficiency of the approach and the application of the 
technique to identify other heart diseases like arrhyth-
mias, atrial fibrillation, and heart failure. Also, we will 
further explore about the integration of ECG with echo-
cardiography, patient history, or genetic biomarkers for 
improved diagnostics. Additionally, the devised model 
will be embedded in real-time monitoring systems for 
analysing at-risk patients thereby improving the early 
detection of cardiac diseases and preventing further 
complications. In future, we plan to integrate the transfer 
learning approaches for tuning the model and will fur-
ther test the model on different datasets. This integration 
with the devised model will make the model adaptable to 
identify individual patient variations.
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