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Abstract
Background The hemoglobin glycation index (HGI), which quantifies the difference between observed and 
predicted hemoglobin A1c (HbA1c) levels, has been linked to adverse outcomes. However, its relationship with 
myocardial infarction (MI) in patients with diabetes mellitus (DM) remains unexplored. This study aimed to investigate 
the association between HGI and MI incidence in critically ill patients with diabetes mellitus (DM) using data from the 
MIMIC-IV database.

Methods Linear regression analysis of HbA1c and fasting blood glucose levels was conducted to calculate HGI. 
Subsequently, differences in MI incidence across HGI quartiles were assessed using the Kaplan-Meier survival analysis, 
with the log-rank test applied. Cox proportional hazards models and restricted cubic spline (RCS) analyses were 
conducted to estimate hazard ratios (HRs) for MI risk across HGI quartiles, with Q1 as the reference.

Results A total of 8,055 DM patients with an initial ICU admission exceeding 24 h were included, with 21.5% of 
them presenting MI. Compared to HGI Q1 (-3.81, -1.236), the risk of MI increased by 1.26 times in Q2 (HR: 1.26, 95% 
confidence interval [CI]: 1.10–1.45), 1.48 times in Q3 (HR: 1.48, 95% CI: 1.29–1.69), and 1.39 times in Q4 (HR: 1.39, 95% 
CI: 1.21–1.60). RCS analysis showed a nonlinear positive association between HGI and outcome events that remained 
consistent across different subgroups as the stratified analysis suggested.

Conclusion A significant correlation was revealed between HGI and the risk of MI in patients with DM, especially 
among those with elevated HGI levels, suggesting that HGI may serve as a potential biomarker for assessing MI risk in 
this population.
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Introduction
Diabetes mellitus (DM) remains a chronic global health 
concern that increases the risk of various complications, 
notably cardiovascular diseases (CVDs), nephropathy, 
retinopathy, and neurological damage. These complica-
tions not only adversely impact patients’ quality of life 
but also impose tremendous burdens on global socioeco-
nomic structures. Therefore, it is of critical significance 
to prevent the onset of DM and effectively manage its 
progression [1].

Despite advances in the management of DM, coro-
nary artery disease (CAD) remains a major concern to 
be addressed. In CAD, the accumulation of lipid plaques 
within the coronary arteries progressively restricts blood 
flow to the heart, potentially causing severe cardiovas-
cular events. While significant improvements have been 
made in the early diagnosis and treatment of CAD, the 
morbidity and mortality of this disease remain alarmingly 
elevated, particularly among patients who are at a higher 
risk of CAD, accompanied by DM [2].

As a serious and often fatal complication of CAD, myo-
cardial infarction (MI) typically arises from the rupture 
of arterial plaque, resulting in vascular obstruction and 
cessation of blood supply to the heart. If not promptly 
treated, MI can cause extensive cardiac damage or even 
sudden death [3], contributing to cardiovascular mortal-
ity, particularly in individuals with DM. In DM, chronic 
hyperglycemia accelerates vascular wall damage, promot-
ing atherosclerosis and plaque formation, thereby elevat-
ing the risk of MI [4].

Hemoglobin A1c (HbA1c), the gold standard for long-
term glycemic control, reflects average blood glucose 
over 2–3 months but exhibits variability from factors like 
erythrocyte lifespan and glycation heterogeneity [5, 6]. 
Conversely, fasting blood glucose (FBG) captures acute 
glycemia but overlooks chronic fluctuations and tissue 
damage [7]. While these two metrics are complemen-
tary, they may not adequately stratify risks in discordant 
cases. The hemoglobin glycation index (HGI)—calculated 
as the residual between observed and FBG-predicted 
HbA1c—quantifies interindividual glycation variabil-
ity [8, 9]. High HGI signifies disproportionately elevated 
HbA1c relative to FBG, indicating susceptibility to vascu-
lar complications despite comparable FBG [10]. HGI has 
distinct advantages over FBG or HbA1c alone in predict-
ing the risk of DM complications. HbA1c may not fully 
capture individual variations in response to glycemic 
management, while HGI, by quantifying the discrepancy 
between HbA1c and FBG, facilities the identification 
of individual differences in glucose metabolism among 
patients with similar FBG levels [7]. This provides an 
approach for more comprehensively understanding the 
glucose dynamics, especially in patients whose HbA1c 

and FBG levels are discordant, thereby identifying indi-
viduals at a higher risk of metabolic abnormalities [5].

Research has demonstrated that HGI is a strong pre-
dictor of all-cause mortality and various complications of 
DM, including CVD, and microvascular complications [8, 
9]. Given that only considering the FBG level may under-
estimate the long-term impact of hyperglycemia on tis-
sue damage, and relying solely on HbA1c might overlook 
the short-term risks from acute glucose fluctuations [10], 
HGI, as a complementary marker to FBG and HbA1c, 
has been considered to offer more accurate identification 
of high-risk diabetic patients, enabling earlier monitor-
ing and intervention. This study aimed to calculate HGI 
based on data from the Medical Information Mart for 
Intensive Care IV (MIMIC-IV) database through a linear 
regression model and analyze its correlation with MI in 
critically ill patients with DM.

Materials and methods
Study data
Data for this study were obtained from the MIMIC-
IV 3.0 database, a publicly accessible database of clini-
cal data in emergency and critical care medicine. The 
MIMIC database includes detailed patient information 
obtained from the critical care system at Beth Israel Dea-
coness Medical Center, covering the period from 2008 
to 2022. It encompasses comprehensive records includ-
ing demographics, surgical information, various clinical 
scores, laboratory indicators, medication records, vital 
signs, and survival prognosis [11]. As an anonymous 
public database, MIMIC is compliant with institutional 
review board protocols, with all personal information 
de-identified.

Study population
Cohort selection was based on the International Classifi-
cation of Diseases (ICD)-9 and − 10 codes. Patients meet-
ing the following criteria were excluded (Fig. 1): (1) Age 
below 18 years; (2) Non-first-time ICU admissions; (3) 
ICU stay of less than 24 h; or (4) With missing data on 
HbA1c or FBG.

Data extraction
Data were extracted using SQL with PostgreSQL (version 
16.3.2). The potential confounding variables included 
were as follows: (1) Baseline demographics: age, gen-
der, marital status, and race; (2) Comorbidities: chronic 
obstructive pulmonary disease (COPD), hypertension, 
congestive heart failure (CHF), severe liver disease, and 
chronic kidney disease (CKD); (3) Laboratory param-
eters: partial thromboplastin time (PTT), hemoglobin 
(HGB), white blood cells (WBC), platelets (PLT), red 
blood cells (RBC), prothrombin time (PT), systolic blood 
pressure (SBP), heart rate, mean arterial pressure (MAP), 
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international normalized ratio (INR), oxygen satura-
tion (SpO2), diastolic blood pressure (DBP), mean cor-
puscular volume (MCV), hematocrit, mean corpuscular 
hemoglobin content (MCH), temperature, lymphocytes, 
neutrophils, and Estimated Glomerular Filtration Rate 
(eGFR); (4) Severity scores: Sepsis-Organ Failure Assess-
ment Score (SOFA), Acute Physiology Score III (APSIII), 
Systemic Inflammatory Response Syndrome (SIRS), and 
Simplified Acute Physiology Score II (SAPSII).

The eGFR was calculated using the following formula: 
(*1 for males)

eGFR (ml/ (min*1.73m2)) = 186 x (Scr)^-1.154 x (age)^-
0.203 × (0.742 for females)

Definition of exposure variables and outcome events
A linear regression model was developed to assess the 
relationship between FBG and HbA1c. The predicted 
HbA1c was calculated using the equation: Predicted 
HbA1c = 0.0054*FBG + 6.7. The relationship between 

HbA1c and FBG is displayed in Fig.  2. The primary 
outcome was the incidence of MI, while the second-
ary outcome was defined as in-hospital mortality after 
admission.

Statistical analyses
The enrolled participants were divided into four groups 
based on HGI quartiles: group Q1 (n = 2017, HGI ≤ 
-1.236), group Q2 (n = 2011, -1.236 < HGI ≤ -0.533), 
group Q3 (n = 2013, -0.533 < HGI ≤ 0.687), and group 
Q4 (n = 2014, HGI > 0.687). Categorical variables were 
expressed as percentages, with intergroup comparisons 
conducted using the chi-square test. Continuous vari-
ables were summarized as quartiles following normality 
testing, and the nonparametric rank-sum test was used 
for intergroup comparisons. Hazard ratios (HR) for HGI 
as a risk factor for outcome events were assessed using a 
Cox proportional hazards model, with group Q1 as the 
reference group. Potential confounding variables were 

Fig. 1 Flow chart of the patient selection process in this study. A total of 11,846 patients with DM admitted to the ICU were initially screened. Among 
them, 3,791 (32.0%) were excluded due to missing HbA1c or FBG data on their first day of admission. The final analysis included 8,055 patients, who were 
subsequently categorized into HGI quartiles
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included in a multivariate Cox regression model and 
tested for trends. Differences between groups were ana-
lyzed using Kaplan-Meier (KM) survival analysis based 
on the HGI quartiles, supplemented by log-rank tests. 
Restricted cubic spline (RCS) curves were employed to 
elucidate the association between HGI and the incidence 
of MI.

Results
HGI-based comparison of patients’ baseline information
The baseline characteristics of the 8,055 eligible patients, 
categorized into four HGI groups (Q1, Q2, Q3, and 
Q4), are concluded in Table 1. We observed no statisti-
cally significant differences in SpO2, lymphocytes, neu-
trophils, APSIII, or SIRS scores among the four groups. 
Age distribution varied significantly across the four HGI 
groups, with the highest proportion of elderly patients in 
Q2 (68.27%) and the lowest in Q4 (40.42%).

Patients in Q4 exhibited significantly higher hemo-
globin levels (10.800  g/dL) and erythrocyte counts 
(3.72 × 10¹²/L) compared to those in other quartiles. 
In contrast, patients in Q3 and Q4 were found to show 
significantly higher leukocyte levels and a higher preva-
lence of CKD. CHF was most prevalent in patients in Q3 

(35.37%), whereas severe liver disease was more common 
in patients in Q1 and Q2.

KM analysis of the cumulative risk of MI and in-hospital 
mortality
As shown in Fig. 3, KM survival analysis revealed signifi-
cant differences in the cumulative incidence of MI and 
in-hospital mortality across HGI quartiles. The Q1 group 
exhibited the lowest incidence of MI, with a log-rank 
p-value of < 0.0001 (Fig.  3A). In contrast, the Q4 group 
showed a significantly higher risk of in-hospital mortal-
ity compared to other quartiles (log-rank p = 0.00056; 
Fig.  3B). To clarify potential discrepancies in the visual 
interpretation of Fig. 3B, detailed event numbers and per-
centages are provided in Supplementary Table 1. Notably, 
while the Q4 survival curve appears higher (indicating 
lower mortality) during the early follow-up period, it 
sharply declines beyond day 60, ultimately demonstrat-
ing the poorest survival outcome. This temporal pattern 
aligns with the statistical significance of the log-rank test.

Correlation analysis between HGI and the incidence of MI
To assess the association between HGI and the incidence 
of MI, several Cox proportional hazard models were 

Fig. 2 Linear correlation between FBG and HbA1c, with and the equation for predicted HbA1c: Predicted HbA1c = 0.0054*FBG + 6.7
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level Overall Q1 Q2 Q3 Q4 P-value
Number 8055 2017 2011 2013 2014
Age (%) > 65 4676 (58.05) 1224 (60.68) 1373 (68.27) 1265 (62.84) 814 (40.42) < 0.0001

≤ 65 3379 (41.95) 793 (39.32) 638 (31.73) 748 (37.16) 1200 (59.58)
Gender (%) F 3312 (41.12) 851 (42.19) 854 (42.47) 774 (38.45) 833 (41.36) 0.0378

M 4743 (58.88) 1166 (57.81) 1157 (57.53) 1239 (61.55) 1181 (58.64)
Race (%) Black 1309 (16.25) 297 (14.72) 316 (15.71) 290 (14.41) 406 (20.16) < 0.0001

Others 1732 (21.50) 390 (19.34) 412 (20.49) 463 (23.00) 467 (23.19)
White 5014 (62.25) 1330 (65.94) 1283 (63.80) 1260 (62.59) 1141 (56.65)

Marital status (%) Divorced 621 (7.71) 141 (6.99) 146 (7.26) 155 (7.70) 179 (8.89) < 0.0001
Married 3858 (47.90) 927 (45.96) 1021 (50.77) 1029 (51.12) 881 (43.74)
Others 377 (4.68) 87 (4.31) 91 (4.53) 94 (4.67) 105 (5.21)
Single 2198 (27.29) 582 (28.85) 464 (23.07) 472 (23.45) 680 (33.76)
Widowed 1001 (12.43) 280 (13.88) 289 (14.37) 263 (13.07) 169 (8.39)

INR (median [IQR]) 1.200 [1.100, 1.400] 1.200 [1.100, 1.500] 1.200 [1.100, 
1.400]

1.200 [1.100, 
1.400]

1.200 [1.100, 1.300] < 0.0001

PT (median [IQR]) 13.200 [11.900, 
15.500]

13.400 [12.000, 
16.200]

13.300 [12.100, 
15.800]

13.200 [11.900, 
15.300]

12.900 [11.650, 
14.800]

< 0.0001

PTT (median [IQR]) 31.000 [27.400, 
39.900]

31.800 [27.900, 
41.600]

31.200 [27.600, 
40.700]

30.800 [27.075, 
38.425]

30.300 [26.800, 
38.300]

< 0.0001

Heart rate (median 
[IQR])

83.250 [74.381, 
93.375]

83.014 [73.383, 
93.885]

82.370 [73.832, 
92.464]

82.509 [74.571, 
91.945]

85.094 [75.850, 
95.236]

< 0.0001

SBP (median [IQR]) 117.500 [108.200, 
130.401]

117.286 [107.355, 
130.208]

117.027 [107.920, 
129.687]

117.465 [108.610, 
130.027]

118.319 [109.542, 
132.028]

0.001

DBP (median [IQR]) 60.389 [54.219, 
68.560]

60.364 [54.175, 
68.243]

59.481 [53.553, 
67.370]

59.213 [53.423, 
67.343]

62.929 [56.243, 
70.625]

< 0.0001

MBP (median [IQR]) 76.320 [70.577, 
84.160]

76.350 [70.319, 
84.520]

75.667 [70.000, 
83.220]

75.310 [70.152, 
83.258]

77.965 [71.896, 
86.000]

< 0.0001

SPO2 (median 
[IQR])

97.259 [95.913, 
98.500]

97.200 [95.800, 
98.439]

97.261 [95.880, 
98.437]

97.180 [95.941, 
98.529]

97.387 [96.039, 
98.577]

0.0512

Hemoglobin (me-
dian [IQR])

10.600 [9.100, 
12.300]

10.600 [8.900, 
12.200]

10.600 [9.100, 
12.100]

10.500 [9.100, 
12.100]

10.800 [9.100, 
12.600]

0.0058

Hematocrit (me-
dian [IQR])

32.100 [27.900, 
37.000]

31.900 [27.500, 
37.000]

32.000 [27.900, 
36.800]

32.050 [27.925, 
36.600]

32.700 [28.100, 
37.675]

0.0014

MCV (median [IQR]) 90.000 [86.000, 
94.000]

91.000 [87.000, 
96.000]

90.000 [86.000, 
94.000]

90.000 [86.000, 
94.000]

89.000 [85.000, 
93.000]

< 0.0001

MCH (median [IQR]) 29.700 [28.000, 
31.100]

30.100 [28.500, 
31.500]

29.700 [28.000, 
31.100]

29.500 [28.000, 
30.900]

29.300 [27.700, 
30.700]

< 0.0001

Temperature (me-
dian [IQR])

36.803 [36.590, 
37.057]

36.803 [36.591, 
37.057]

36.797 [36.586, 
37.042]

36.790 [36.584, 
37.039]

36.826 [36.602, 
37.082]

0.0175

RBC (median [IQR]) 3.620 [3.110, 4.200] 3.540 [3.020, 4.130] 3.590 [3.100, 
4.170]

3.620 [3.130, 
4.162]

3.720 [3.170, 4.320] < 0.0001

WBC (median [IQR]) 8.600 [6.500, 11.700] 8.300 [6.100, 11.400] 8.600 [6.500, 
11.675]

8.900 [6.800, 
11.800]

8.800 [6.600, 11.800] < 0.0001

eGFR (median 
[IQR])

29.729 [0.000, 
58.091]

23.641 [0.000, 
58.050]

28.422 [0.000, 
56.846]

34.995 [0.000, 
58.771]

31.048 [0.000, 
59.050]

0.0142

Lymphocytes 
(median [IQR])

19.300 [12.100, 
27.200]

18.900 [11.700, 
26.900]

19.600 [12.700, 
27.500]

19.500 [12.600, 
27.000]

19.000 [11.500, 
27.300]

0.1513

Neutrophils (me-
dian [IQR])

71.400 [62.500, 
80.000]

71.200 [62.000, 
79.900]

71.000 [62.600, 
79.800]

71.000 [62.800, 
79.600]

72.400 [62.600, 
80.800]

0.1591

APSIII (median 
[IQR])

42.000 [31.000, 
55.000]

42.000 [31.000, 
56.000]

41.000 [31.000, 
55.000]

41.000 [31.000, 
54.000]

42.000 [32.000, 
54.000]

0.3572

SAPSII (median 
[IQR])

35.000 [28.000, 
44.000]

36.000 [29.000, 
45.000]

36.000 [30.000, 
45.000]

35.000 [28.000, 
44.000]

33.000 [25.000, 
42.000]

< 0.0001

SIRS (median [IQR]) 3.000 [2.000, 3.000] 3.000 [2.000, 3.000] 3.000 [2.000, 
3.000]

3.000 [2.000, 
3.000]

3.000 [2.000, 3.000] 0.1052

Table 1 Comparison of baseline information of the patients according to the HGI
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constructed, with Q1 as the reference (Table  2). In the 
unadjusted Model 1, the incidence of MI was significantly 
elevated in groups Q2, Q3, and Q4, with HR of 1.26 (95% 
confidence interval [CI]: 1.10–1.45, p = 0.001) for Q2, 
1.48 (95% CI: 1.29–1.69, p < 0.001) for Q3, and 1.39 (95% 
CI: 1.21–1.60, p < 0.001) for Q4, suggesting a significant 
association between higher HGI levels and increased 
MI risk (HR > 1, p < 0.001). In Model 2, which adjusted 
for demographics, the Q4 group exhibited the highest 
MI incidence (HR = 1.52, 95% CI: 1.32–1.75, p < 0.001), 
while the HRs in Q2 and Q3 were slightly reduced. After 
further adjustment for additional confounding variables 

in Model 3, the association remained significant in 
groups Q3 and Q4, with HRs of 1.30 (95% CI: 1.06–1.58, 
p = 0.010) for Q3 and 1.46 (95% CI: 1.20–1.78, p < 0.001) 
for Q4. However, the risk of MI in group Q2 was no lon-
ger statistically significant.

To further illustrate the relationship between HGI 
and the incidence of MI, the RCS method (Fig.  4) was 
employed to account for nonlinear trends. With the 
solid line representing the estimated HR of HGI and the 
shaded area denoting the 95% CI, a statistically significant 
association between HGI and MI incidence character-
ized by a nonlinear relationship was observed. Notably, 

Fig. 3 KM survival curves comparing A: cumulative incidence of MI and B: in-hospital mortality among different HGI groups. The transiently higher sur-
vival probability in the Q4 group during early follow-up may reflect short-term therapeutic interventions or enrollment bias. However, the long-term risk 
diverges markedly, with Q4 exhibiting the lowest 150-day survival rate (45% vs. 68% in Q2 and 62% in Q3)

 

level Overall Q1 Q2 Q3 Q4 P-value
SOFA (median 
[IQR])

4.000 [2.000, 6.000] 5.000 [2.000, 7.000] 4.000 [2.000, 
6.000]

4.000 [2.000, 
6.000]

4.000 [2.000, 6.000] < 0.0001

Insulin (%) No 169 (2.10) 109 (5.40) 49 (2.44) 8 (0.40) 3 (0.15) < 0.0001
Yes 7886 (97.90) 1908 (94.60) 1962 (97.56) 2005 (99.60) 2011 (99.85)

Myocardial 
infarction

No 6327 (78.55) 1645 (81.56) 1583 (78.22) 1540 (76.50) 1559 (77.41) 0.0006

Yes 1728 (21.45) 372 (18.44) 428 (21.28) 473 (23.50) 455 (22.59)
CKD (%) No 6177 (76.69) 1532 (75.95) 1596 (79.36) 1566 (77.79) 1483 (73.63) 0.0001

Yes 1878 (23.31) 485 (24.05) 415 (20.64) 447 (22.21) 531 (26.37)
CHF (%) No 5467 (67.87) 1390 (68.91) 1345 (66.88) 1301 (64.63) 1431 (71.05) 0.0001

Yes 2588 (32.13) 627 (31.09) 666 (33.12) 712 (35.37) 583 (28.95)
COPD (%) No 7139 (88.63) 1740 (86.27) 1775 (88.26) 1796 (89.22) 1828 (90.76) 0.0001

Yes 916 (11.37) 277 (13.73) 236 (11.74) 217 (10.78) 186
(9.24)

Severe liver disease 
(%)

No 7782 (96.61) 1899 (94.15) 1964 (97.66) 1956 (97.17) 1963 (97.47) < 0.0001

Yes 273 (3.39) 118 (5.85) 47 (2.34) 57 (2.83) 51 (2.53)
Hypertension (%) No 2300 (28.55) 574 (28.46) 527 (26.21) 552 (27.42) 647 (32.13) 0.0002

Yes 5755 (71.45) 1443 (71.54) 1484 (73.79) 1461 (72.58) 1367 (67.87)

Table 1 (continued) 
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the risk of MI increased significantly with the elevation of 
HGI values, especially when HGI was positive, indicating 
a positive association.

Subgroup analysis
We assessed the prognosis of patients by performing sub-
group analyses based on comorbidities such as hyper-
tension, CHF, CKD, and COPD. As shown in Fig.  5, in 
patients with DM aged over 65 years with conditions 
such as CHF, the risk of MI were revealed to be strongly 
correlated with HGI, suggesting that higher HGI values 
within specific subgroups are associated with an elevated 
incidence of MI. Subgroup analyses demonstrated that 
higher HGI quartiles (Q4) were associated with elevated 
MI risk (HR = 1.44, 95% CI 1.25–1.66) under the simpli-
fied adjustment model. Differences in HRs compared to 

Model 3 in Table 2, arise from the exclusion of laboratory 
parameters in the forest plot analysis.

Discussion
DM remains a major health concern worldwide that 
needs to be addressed, and it has been confirmed to be 
in close association with CVD. Both diabetes and predia-
betes are usually associated with hyperglycemia and insu-
lin resistance, leading to an increase in reactive oxygen 
species (ROS) and activation of intracellular signaling 
pathways. This process contributes to a pro-thrombotic 
state and promotes increased inflammatory mediators, 
accelerating the progression of atherosclerosis and ulti-
mately macrovascular disease. Consequently, patients 
with diabetes or prediabetes are more susceptible to seri-
ous cardiovascular events [12, 13]. MI remains one of 
the leading causes of mortality among patients with DM. 

Table 2 Association between HGI and the incidence of MI in patients with DM
HGI levels Model 1 Model 2 Model 3

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value
Q1 Ref. Ref. Ref.
Q2 1.26 (1.10–1.45) 0.001 1.24 (1.08–1.42) 0.003 1.20 (0.98–1.46) 0.074
Q3 1.48 (1.29–1.69) < 0.001 1.47 (1.29–1.69) < 0.001 1.30 (1.06–1.58) 0.010
Q4 1.39 (1.21–1.60) < 0.001 1.52 (1.32–1.75) < 0.001 1.46 (1.20–1.78) < 0.001
Model 1: unadjusted model; Model 2: adjusted by age, gender, race, and marital status; Model 3: adjusted by all the factors included in this research

Fig. 4 RCS curve displaying the HRs of HGI in different Cox proportional hazard models. A: RCS curve for model 1, B: RCS curve for model 2, and C: RCS 
curve for model 3

 



Page 8 of 11Gao and Wang BMC Cardiovascular Disorders          (2025) 25:368 

Although advancements in thrombolytic therapy and 
pharmacological treatments (e.g., aspirin, β-blockers, and 
angiotensin-converting enzyme inhibitors) have shown 
to reduce the mortality among MI patients, poor meta-
bolic control continues to pose a major challenge in this 
population [14, 15].

Large-scale studies have demonstrated that optimizing 
glycemic control in DM patients without a prior history 
of cardiac disease resulted in a nonnegligible reduction in 
the incidence of heart disease and MI [16]. In addition, 
antihypertensive treatment has been shown to be effec-
tive in preventing cardiovascular events in patients with 
DM. However, whether the treatment of hyperlipidemia 

can further reduce the risk of MI remains a subject of 
ongoing investigation [17, 18]. Under this circumstance, 
this study investigated the relationship between HGI 
and the incidence of MI in patients with DM precisely 
using the MIMIC-IV database. Our experimental results 
revealed a significant positive association between them, 
contributing to a deeper understanding of MI risk in this 
population and providing a scientific basis for the devel-
opment of targeted clinical interventions.

HGI quantifies interindividual disparities in HbA1c 
levels relative to FBG, capturing inherent variability in 
glucose metabolism. Notably, elevated HGI reflects pro-
longed hyperglycemic exposure, even in individuals with 

Fig. 5 Subgroup analysis of HRs for MI across different characteristics. Higher HGI quartiles (Q2-Q4) were associated with significantly elevated MI risk (Q4 
HR = 1.44, 95% CI 1.25–1.66, p < 0.001)
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“normal” HbA1c levels, through mechanisms involv-
ing chronic glycation. Excessive glucose flux promotes 
non-enzymatic glycation of proteins and lipids, leading 
to the generation of advanced glycation end products 
(AGEs). These AGEs accumulate in vascular tissues, bind 
to receptors (RAGE) to activate inflammatory cascades 
(e.g., NF-κB), amplify oxidative stress, and induce endo-
thelial dysfunction—key drivers of atherosclerotic plaque 
formation and instability [19–22]. This mechanistic link 
explains why higher HGI correlated with increased MI 
risk in our cohort. Prior studies have linked elevated 
HGI to microvascular complications (e.g., retinopathy, 
nephropathy) [21], but its role in macrovascular disease 
remains contentious [17, 23]. Our results bridge this gap, 
demonstrating that HGI captures metabolic derange-
ments beyond HbA1c or FBG alone, particularly chronic 
glycemic variability linked to AGE-mediated vascular 
injury. Traditional glycemic indices, such as HbA1c and 
FBG, possess unique advantages but are limited in their 
ability to monitor long-term glycemic control com-
prehensively. HbA1c can be affected by factors such as 
red blood cell longevity and anemia, while FBG mainly 
reflects short-term glycemic fluctuations [19, 20]. HGI 
addresses these gaps by integrating both measures to 
estimate an individual’s propensity for glycation. This is 
especially critical given that glycemic variability—even 
within normoglycemic ranges—induces ROS bursts, 
endothelial damage, and plaque vulnerability [24]. These 
metabolic differences are crucial for predicting car-
diovascular complications (e.g., MI), as chronic blood 
glucose fluctuations contribute to the accumulation of 
AGEs, which have been shown to be strongly associated 
with atherosclerosis, inflammatory responses, and endo-
thelial dysfunction [22]. Thus, increased HGI suggests 
higher glycosylation levels in individuals with chronic 
glycemic exposure, potentially elucidating mechanisms 
behind the increased risk of MI.

This study further confirms the significant association 
between HGI and the risk of MI in patients with DM. 
Higher HGI levels corresponded with an increased risk 
of MI, which is in line with the findings of prior stud-
ies on the role of HGI in reflecting long-term metabolic 
disorders [24]. Notably, patients within the Q1 group, 
despite having the lowest HGI, also exhibited MI risk, 
likely related to elevated FBG levels, a known cardiovas-
cular risk factor [25, 26]. This suggests that relying on 
HGI alone to assess MI risk may have limitations [27]. 
Our findings indicate that in patients with DM, neither 
HbA1c nor HGI alone adequately captures the impact of 
metabolic disorders on cardiovascular health. Despite the 
difference in HGI levels, the observation that both the Q1 
and Q4 groups exhibited increased MI risk highlights the 
necessity of incorporating additional metabolic markers, 

such as FBG and insulin resistance, into cardiovascular 
risk assessments [28].

In addition, this study underscores the important role 
of traditional cardiovascular risk factors in patients with 
DM. Advanced age and a history of CHF were revealed 
to be associated with a higher risk of MI, which was con-
sistent with existing literature [29]. Furthermore, White 
patients exhibited a significantly higher risk of MI than 
other racial groups, possibly reflecting disparities in 
genetics, lifestyle, or access to healthcare resources [30]. 
Meanwhile, patients with chronic liver disease demon-
strated a lower risk of MI, possibly due to liver dysfunc-
tion affecting glucose and lipid metabolism, thereby 
slowing the progression of atherosclerosis [31].

In critically ill patients, short-term metabolic distur-
bances (e.g., stress hyperglycemia) are strongly associated 
with adverse clinical outcomes and can exacerbate the 
severity of CAD, leading to endothelial dysfunction and 
microvascular occlusion [32, 33]. HGI has the advantage 
of capturing metabolic heterogeneity that is not reflected 
by HbA1c and FBG, which is particularly useful for iden-
tifying patients with normal HbA1c levels who nonethe-
less face elevated cardiovascular risks [24]. Future studies 
should integrate HGI with other metabolic markers, such 
as insulin resistance and inflammatory markers, to con-
struct a more comprehensive cardiovascular risk assess-
ment model to optimize personalized management of 
DM [34].

Our findings highlight HGI’s potential in identifying 
“discordant” patients with normal HbA1c levels but high 
propensity for glycation, who may benefit from earlier 
interventions such as statin or GLP-1RA therapy to miti-
gate AGE-related vascular injury. Conversely, patients 
with low HGI but elevated FBG may benefit from stricter 
glucose monitoring. The observed impact of traditional 
risk factors, including age, CHF, and race, emphasizes 
the need for multifactorial management, while the lower 
MI risk in chronic liver disease patients warrants further 
investigation [31]. This study’s strengths include using 
the MIMIC-IV database and adjusting for confound-
ers, focusing on critically ill patients with DM. However, 
potential residual confounding and demographic differ-
ences across HGI quartiles may limit causal inferences. 
Future studies should validate HGI’s prognostic value and 
investigate its integration with omics-derived biomarkers 
[34]. Given the complexity of ICU patients, large-scale 
prospective studies are necessary to fully elucidate HGI’s 
role in predicting poor prognosis. A more comprehensive 
assessment combining HGI, FBG, and other metabolic 
markers may improve the prediction of cardiovascular 
risk and reduce the incidence of MI [35].
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Limitations
Despite relevant clinical information obtained from the 
MIMIC-IV database, not all clinical diagnostic infor-
mation was available, leaving the possibility of multiple 
unmeasured confounding factors. Second, the HGI cal-
culated in this study may not be directly generalizable to 
other populations. Future research should incorporate 
more comprehensive data from various large-scale data-
bases to develop a more generalized regression model for 
HGI estimation across different populations. Third, our 
study excluded 32.0% of the initial cohort due to miss-
ing HbA1c or FBG data. This high proportion of miss-
ing data raises concerns about potential selection bias, 
as excluded patients might differ systematically from 
those included (e.g., less frequent glucose monitoring in 
critically ill or unstable cases). Consequently, our find-
ings may not fully represent the broader population with 
DM admitted to the ICU. Future studies should adopt 
advanced statistical techniques (e.g., multiple imputa-
tions) to address the challenges raised by missing data.

Conclusion
This study identified a nonlinear relationship between 
HGI and the incidence of MI in critically ill patients with 
DM based on patient data retrieved from the MIMIC-IV 
database. HGI was confirmed as an effective indicator 
of poor prognosis in critically ill patients with DM and 
a potential indicator of MI risk as well as short- and long-
term mortality. Given its clinical significance, patients 
with abnormal HGI should be given extra attention upon 
their initial admission to the ICU.
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