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Abstract
Introduction Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease 
(CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) 
models in predicting different outcomes after PCI.

Methods Studies using ML or deep learning (DL) models to predict mortality, MACE, in-hospital bleeding, and acute 
kidney injury (AKI) after PCI or primary PCI were included. Articles were excluded if they did not provide a c-statistic, 
solely used ML models for feature selection, were not in English, or only used logistic or LASSO regression models. 
Best-performing ML and LR-based models (LR model or conventional risk score) from the same studies were pooled 
separately to directly compare the performance of ML versus LR. Risk of bias was assessed using the PROBAST and 
CHARMS checklists.

Results A total of 59 studies were included. Meta-analysis showed that ML models resulted in a higher c-statistic 
compared to LR in long-term mortality (0.84 vs. 0.79, P-value = 0.178), short-term mortality (0.91 vs. 0.85, P = 0.149), 
bleeding (0.81 vs. 0.77 P = 0.261), acute kidney injury (AKI; 0.81 vs. 0.75, P = 0.373), and major adverse cardiac events 
(MACE; 0.85 vs. 0.75, P = 0.406). PROBAST analysis showed that 93% of long-term mortality, 70% of short-term 
mortality, 89% of bleeding, 69% of AKI, and 86% of MACE studies had a high risk of bias.

Conclusion No statistical significance existed between ML and LR model. In addition, the high risk of bias in ML 
studies and complexity in interpretation undermines their validity and may impact their adaption in a clinical settings.
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Introduction
Percutaneous coronary intervention (PCI) has been the 
mainstay in the treatment of coronary artery disease 
(CAD) since it was introduced in 1977 [1]. Despite sev-
eral advances in PCI technology, post-procedural com-
plications such as acute kidney injury, bleeding, and 
mortality are not uncommon [2]. As such, several pre-
diction models like the United States National Cardio-
vascular Data Registry Risk Score (NCDR-CathPCI risk 
score) [3, 4], Mehran Score [5, 6], and New York State 
Risk Score [7] have been developed to identify high-risk 
patients. Prediction models have also been used to assess 
patient prognosis. For instance, SYNTAX score II has 
been utilized in predicting long-term mortality after PCI 
[8]. All of these models have been based on conventional 
statistical methods like logistic regression (LR).

In contrast to statistical methods such as LR, ML refers 
to a set of computational techniques that automatically 
learn patterns from data to make predictions or deci-
sions, rather than relying solely on explicitly programmed 
instructions. Unlike traditional statistical methods that 
often focus on hypothesis testing and inferring relation-
ships between variables, machine learning is primarily 
concerned with prediction accuracy and pattern recogni-
tion [9].

While LR models the relationship between predictors 
and a binary outcome using an interpretable formula, 
ML models such as random forests or neural networks/
deep learning models can capture complex, non-linear 
relationships in the data. This allows these models to 
potentially identify subtle interactions among variables 
that might be missed by traditional approaches. How-
ever, these advantages come with challenges: ML models 
may require larger datasets, careful tuning to avoid over-
fitting, and sometimes yield models that are less imme-
diately interpretable than logistic regression [9]. There 
is also a widespread, difficult to navigate gap between 
achieving good performance metrics in internal/external 
validation (for ML models) and delivering clinical utility. 

Most studies on ML models in medicine use retrospec-
tive data, which limits the validity of their evidence; the 
adoption of randomized clinical trials as the gold stan-
dard for evaluating clinical utility is also lagging behind 
for ML models [9].

With the increasing adoption of artificial intelligence 
methods (including ML), the cardiology field as with 
many other areas of medicine has been promised better 
predictive accuracy, especially in scenarios with big com-
plex datasets and non-linear relationships between the 
variables [10]. This has inevitably resulted in a huge surge 
in the number of papers using machine learning (ML) 
models to predict post-PCI complications and adverse 
events [2, 11]. However, as journals may lean towards 
accepting articles with better predictive performance 
(higher c-statistic), many ML models may inadvertently 
have overfitting problems caused by inappropriate meth-
odology [12]. In addition, it is still unclear whether we 
should move on from well-established statistical models 
to ML in clinical practice and prognosis assessment of 
PCI patients. This makes a systematic review and criti-
cal appraisal of the literature imperative. Therefore, in the 
current investigation, we aimed to (1) critically review 
the available studies that used ML prediction models for 
post-PCI outcomes and (2) compare the pooled estimates 
of ML models and conventional risk scores or LR when-
ever possible.

Methods
The protocol for this systematic review and meta-analysis 
was registered in the international prospective register of 
systematic reviews (CRD42023494659). PRISMA 2020 
statement was used for reporting this systemtic review 
and meta-analysis [13].

Patient and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of our 
research.

Significance
What is already known on this topic Many ML models are available for predicting adverse complications of PCI. 
However some methodology and performance concerns made it hard to choose between well-established statistical 
vs. ML models.

What this study adds The overall ML and LR models c-statistics were comparable for short- and long-term mortality, 
bleeding, AKI, and MACE prediction. Our risk of bias assessment (using CHARMS and PROBAST checklists) identified a 
high risk of bias and applicability concerns.

How this study might affect research, practice, or policy Future studies should consider the reporting checklists 
to improve their methodology.

Keywords Percutaneous coronary intervention, Machine learning, Logistic regression, Mortality, Major adverse 
cardiac events, Acute kidney injury, bleeding
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Eligibility criteria and outcome definition
Studies using ML or deep learning (DL) models to pre-
dict mortality, MACE, in-hospital bleeding, and acute 
kidney injury (AKI) after PCI or primary PCI were 
deemed eligible. Due to the small number of studies, no 
exclusion criteria were set for CAD type. However, stud-
ies evaluating patients with chronic total occlusion were 
not included. Articles were also excluded if they did not 
provide a c-statistic, solely used ML models for feature 
selection, were not in English, or only used logistic or 
LASSO regression models. Studies using similar datas-
ets were included for risk of bias assessment, but only the 
investigation with a higher number of patients was con-
sidered in the meta-analysis.

Short-term mortality were considered as < 1 year fol-
low-up, while long-term mortality were identified as ≥ 1 
year of follow-up. MACE was defined if it was a combi-
nation of at least three of the following five components: 
death, myocardial infarction, coronary revascularization, 
stroke, and hospitalization because of heart failure. No 
prior definitions of bleeding and AKI were used to screen 
articles as studies used different criteria.

Search strategy
The search for the current study was conducted on 
PubMed, Embase, Web of Science, and Scopus from 
inception until December 11th, 2023. The search strategy 
comprised two components: (1) “machine learning” AND 
(2) “percutaneous coronary intervention”. The full search 
template is available in online Supplementary File S1.

Selection process and data gathering
Two independent reviewers (A.V and S.N) screened the 
articles first based on their title/abstract and then based 
on the full text. Inconsistencies were solved by consen-
sus. Similarly, data collection was done independently by 
A.H and A.M.

Risk of Bias assessment
Critical appraisal and data extraction for systematic 
reviews of prediction modeling studies (CHARMS) 
checklist [14] and prediction model risk of bias assess-
ment tool (PROBAST) [15] were used by two indepen-
dent reviewers (S.N and A.H) to assess all of the included 
studies. The CHARMS and PROBAST Excel template 
developed by Fernandez-Felix et al. was utilized for this 
purpose [16]. Any discrepancies between the review-
ers were solved by consensus. The assessment was only 
done for the best-performing ML model on the valida-
tion dataset.

Data analysis
C-statistics, the area under the receiver operating 
curves (AUC ROCs), were pooled using random effects 

meta-analysis. If the corresponding 95% confidence 
interval was not provided, it was calculated using the 
number of events and sample size based on the methods 
proposed by Hanley and McNeil [17]. Best-performing 
ML and LR-based models (LR model or conventional risk 
score) from the same studies were pooled separately to 
directly compare the performance of ML versus LR. This 
also ensured that heterogeneity stemming from study 
methodology and population would be limited. Further-
more, we performed secondary comparisons based on 
whether the LR models had the same number and type of 
features that ML models had. The pooled estimates were 
compared using the MedCalc online calculator which is 
based on the Hanley and McNeil method [17, 18]. All 
analysis was performed using R statistical software ver-
sion 4.2.1 and metamisc package [19].

Results
Overall, 59 studies were included in the current systemic 
review from which 15 were on long-term mortality [20–
34], 25 on short-term mortality [2, 10, 32, 33, 35–55], 
nine on bleeding [2, 10, 49, 51, 52, 56–59], 16 on AKI [2, 
10, 30, 51, 52, 60–70], and seven on MACE [41, 71–76] 
(Fig.  1). Excluded articles in the full-text screening and 
reasons for exclusion are provided in the Supplementary 
Material 1.

Long-term mortality
Supplementary Table S1-2 (Supplementary Material 2) 
demonstrate the general characteristics of the studies. In 
brief, fifteen articles assessed the performance of ML on 
long-term mortality of which seven (46%) were included 
in the meta-analysis [20, 23, 24, 27, 29, 32, 34]. 40% 
(6/15) of the studies did not report an event per variable 
(EPV) [22–24, 31, 33, 34], while in the others this figure 
was from 1.1 to 28.8 with only one study [26] having an 
EPV > 10. No studies used multiple imputations for han-
dling the missing values and 53% (8/15) studies did not 
report their methods for missing data [22, 24–27, 29, 31, 
32]. Only 40% (6/15) studies reported model calibration 
[20, 25–29], and 26% (4/15) had an external validation 
dataset [20, 26, 28, 29].

One study (6%) had a low risk of bias [20], whereas all 
other studies, 93% (14/15), had a high risk of bias [21–
34]. The majority of the risk of bias, 93%, was stemming 
from the analysis domain. Regarding applicability, 40% 
(6/15) had a low concern [22, 25, 26, 29, 30, 34], 46% 
(7/15) had a high concern [20, 21, 23, 24, 27, 28, 31], and 
13% (2/15) were unclear [32, 33]. The detailed risk of bias 
assessment using CHARMS and PROBAST is provided 
in Excel in supplementary material 4 and Supplementary 
Figure S1 (Supplementary Material 3)

Meta-analysis showed that ML models resulted in 
a 5% higher c-statistic compared to LR (0.84 vs. 0.79, 
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Fig. 1 PRISMA 2020 flow diagram of study selection
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P-value = 0.178). This number was 3% when comparing 
similar features ML and LR, and 6% for different features 
ML and LR (0.83 vs. 0.77, P = 0.230). However, these dif-
ferences were not statistically significant (Fig. 2, Supple-
mentary Figure S2-3). Assessment of the funnel plots 
revealed no asymmetry (Supplementary Figure S4).

Short-term mortality
Twenty-five studies which had developed models for pre-
dicting short-term mortality as an adverse effect of PCI 
were included in our review, 10 of which were assessed 
in the meta-analysis [2, 32, 36, 37, 40, 41, 43, 48, 53, 54]. 
EPV values were in the range 0.4–52, and only 5 studies 
had an EPV of > 10 [2, 40, 51, 52, 54]. A single study [54] 
utilized multiple imputation for handling missing data, 3 
studies utilized single imputation [39, 50, 52], 8 studies 
utilized other procedures or provided unclear explana-
tions on their approach to missing data [2, 10, 33, 40, 42, 
47, 48, 55], and 13 studies didn’t provide any information 
on their approach to missing data [32, 35–38, 41, 43–46, 
49, 51, 53]. (Supplementary Table S3-4).

Risk of bias for these studies is evaluated in supplemen-
tary material 5 and Supplementary Figure S4.

Pooled c-statistics were overall 6% higher for ML mod-
els vs. statistical models (Fig.  2); specifically 5% higher 
in the case of models with different numbers of features 
(Supplementary Figure S5), and 6% higher in the case of 
models with a similar number of features (Supplemen-
tary Figure S6). Notably, none of these differences were 
statistically significant (Table 1).

Bleeding
Nine studies evaluated in-hospital bleeding with an aver-
age age of 60 to 77. In 33% (3/9) [49, 56, 57], the EPV was 
unknown. 11% (1/9) of the investigations used multiple 
imputations for handling the missing data [56] and 22% 
(2/9) used single imputation [2, 57]. No studies had an 
external validation dataset, while only one study (11%) 
reported results using cross-validation [57]. (Supplemen-
tary Table S5-6).

Risk of bias is available at Supplementary Material 
6 and Supplementary Figure S7. Meta-analysis results 
showed a 4% net benefit for the ML models over LR with-
out statistical significance (0.81 vs. 0.77, P = 0.261, Fig. 3).

AKI
We included 16 ML studies of AKI prediction after 
PCI (Mean age: 62.5–70). The best-performing mod-
els had a c-statistic of 0.74–0.89. One study [61] used 
multiple and five studies [2, 30, 62, 63, 66] used single 
imputation methods for handling the missing data, half 
of the included studies (8/16) did not clearly state their 
approach to the missing data [51, 52, 60, 64, 65, 68–70]. 
Five studies (31%) validated their models on external 

datasets [61, 63, 65–67]. Eight studies examined the 
models’ calibration (50%) [2, 10, 62–67]. Five studies 
(31%) did not perform feature selection [2, 10, 60, 63, 
65], five (31%) had insufficient or unclear information on 
choosing final variables [51, 52, 61, 64, 69], and one study 
(6%) used stepwise method [70]. Five studies reported 
EPV [41, 71–73, 76], and only one study had EPV > 10 
[71] (Supplementary Table S7-8).

Ris of bias is demonstrated in Supplementary Mate-
rial 7 and Supplementary Figure S8. Four studies were 
included in the meta-analysis to compare the overall 
ML and LR performance [2, 61, 65, 68], and the pooled 
c-statistics of ML and LR models were comparable (0.81 
vs. 0.75, P = 0.373, Fig.  3). Our secondary analysis also 
reached almost identical results that there was no signifi-
cant difference between ML and LR models, when dif-
ferent (0.78 vs. 0.73, P = 0.337) or similar features (0.81 
vs. 0.75, P = 0.373) were used in the model development 
(Supplementary Figure S9-10).

MACE
Seven studies developed and validated prediction mod-
els of MACE in PCI patients. The c-statistics of the best 
ML ranged from 0.7 to 0.95 (Mean age: 60–69). Six (86%) 
studies developed prediction models on one to ten-year 
MACE [71–76], and one study investigated the in-hospi-
tal MACE [41]. Four studies embedded all of the candi-
date predictors into the final model [41, 71, 73, 74], one 
used the stepwise selection method [75], and two used 
random forest-based algorithms [72, 76]. Only two stud-
ies used external validation for their models [41, 76], and 
two measured calibration of the models [41, 76]. Two 
studies developed survival random forest models for 
MACE models [72, 73] (Supplementary Table S9-10).

Supplementary Material 8 and Supplementary Figure 
S11 show the risk of bias evaluation. Four studies were 
examined in the ML vs. LR meta-analysis [71, 73, 74, 76]. 
The pooled c-statistic of ML models were comparable to 
LR models (0.85 vs. 0.75, P = 0.406, Fig. 3).

Discussion
To our knowledge, this was the first systematic review 
and meta-analysis of the ML models in PCI for CAD 
patients. Our results revealed that ML models had a net 
benefit over LR in several outcomes including, mortality, 
MACE, AKI, and bleeding after PCI, however, there was 
no statistically significant difference.

The risk of bias analysis of the included studies identi-
fied multiple concerns. Several studies did not provide an 
external validation dataset which could result in overfit-
ting. Overfitting happens when the model has memo-
rized the training data too well including the noise rather 
than identifying the patterns. As internal validation has 
a similar source to training data, results in the internal 
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validation may be too optimistic. Therefore, PROBAST 
recommends against the use of simple data splitting into 
train and validation sets, while encouraging using cross-
validation [77–79]. However, even simple cross-validation 

in ML prediction studies may be problematic as studies 
risk data leakage. This is because many ML models require 
fine-tuning hyperparameters during the cross-validation, 
resulting in finding the optimal hyperparameters for the 

Fig. 2 (A) Pooled c-statistic of the best performing ML (left) vs. LR/ risk scores (right) models for long-term mortality. (B) Pooled c-statistic of the best 
performing ML (left) vs. LR/ risk scores (right) models for short-term mortality
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validation dataset that was supposed to be unseen data. 
The solution is a nest-cross validation approach in which 
in the outer loops the model performance is assessed, 
while in the inner loops (training data) the hyperparam-
eters are optimized [80]. This is a critical issue that was 
routinely neglected in the evaluated studies.

A second source of data leakage occurs when data 
pre-processing, such as missing data imputation, feature 
selection, or data normalization, is performed before the 
data is split. Conducting these steps prior to partitioning 
the validation data may lead to data leakage, potentially 
resulting in overfitting. However, This too is difficult to 
assess in ML studies as it is rarely discussed in detail.

A recurrent issue identified in the reviewed literature 
was the inadequacy of the EPV. PROBAST guideline 
advises a minimum EPV of 10 for traditional modeling 
approaches; however, this figure may be insufficient for 
machine learning (ML) techniques [81]. Research indi-
cates that ML models, including RF, SVM, and ANN, 
might require an EPV that is at least 10 times higher 
than that of the LR [81]. This was often overlooked in the 
reviewed articles with numerous studies reporting EPVs 
below 10, far from the suggested threshold of 200 [77, 
81].

The objective of many articles was to compare ML 
models with LR or traditional risk scores [2, 20, 34, 61, 
66]. However, a discrepancy often existed in the num-
ber of features used; LR models typically included 
fewer features compared to the more extensive feature 
set selected for ML models. This disparity led to overly 
favorable results for ML models. Additionally, numer-
ous studies benchmarked the performance of ML mod-
els against established risk scores such as the GRACE or 
SYNTAX scores. Given that ML models are developed 
datasets similar to those they are tested against, it is plau-
sible to anticipate superior performance over traditional 
risk scores, which are derived from different datasets 

and incorporate a more limited number of features. To 
address this issue, we ensured that when possible the 
ML models were compared using a feature set analogous 
to that of the LR models. This was done alongside the 
broader comparison encompassing all models to provide 
a balanced evaluation. Neither of the analyses showed 
statistical significance, however, in long-term mortality, 
the net benefit of ML models with a similar feature set 
to LR was only 3% in comparison to 6% when comparing 
ML models with more features than LR.

Another significant issue identified in the reviewed 
articles was the absence of model calibration reporting. 
Calibration refers to the alignment of model outcomes 
with the actual likelihood of an event’s occurrence. This 
is crucial, especially when precise predicted probabilities 
are needed alongside a binary outcome. Such detailed 
information can greatly aid in clinical decision-making, 
as it allows a clinician to understand the likelihood of an 
event occurring, rather than simply receiving a binary yes 
or no answer [82].

In our study, outcomes such as MACE and long-term 
mortality were associated with time-to-event data. This 
implies that, in addition to determining the probability 
of an outcome, it is crucial to predict the timing of its 
occurrence. Despite this importance, our review found 
that none of the long-term mortality studies and only two 
MACE studies employed time-to-event models. To rem-
edy this gap, various machine learning and deep learn-
ing-based time-to-event models, such as random survival 
forests and DeepSurv [83] exist.

Our findings are in line with the previous research. A 
study by Dhiman et al. identified that the methodologi-
cal conduct of ML studies in oncology was substandard 
in several domains including, sample size, handling of 
missing data, model development, and model availability 
for evaluation [84]. A study by Mortazavi et al. suggested 
that ML models may only improve performance when 

Table 1 Comparison of the pooled c-statistics of the ML and LR models
Type of outcome No. of studies ML pooled c-statistic LR pooled c-statistic Benefit (%) P-value
Long-term mortality (≥ 1 year)
 Overall ML vs. LR 7 0.84 (0.77–0.89) 0.79 (0.74–0.83) 5 0.178
 Similar features ML vs. LR 4 0.81 (0.64–0.91) 0.78 (0.66–0.87) 3 0.727
 Different features ML vs. LR 5 0.83 (0.74–0.90) 0.77 (0.71–0.83) 6 0.230
Short-term mortality (< 1 year)
 Overall ML vs. LR 10 0.91 (0.84–0.95) 0.85 (0.78–0.90) 6 0.149
 Similar features ML vs. LR 7 0.90 (0.83–0.94) 0.84 (0.72–0.92) 6 0.303
 Different features ML vs. LR 5 0.93 (0.80–0.98) 0.88 (0.73–0.95) 5 0.491
MACE (Overall ML vs. LR) 4 0.85 (0.58–0.96) 0.75 (0.58–0.86) 10 0.406
Bleeding (Overall ML vs. LR) 3 0.81 (0.75–0.86) 0.77 (0.72–0.81) 4 0.261
Acute Kidney Injury
 Overall ML vs. LR 4 0.81 (0.75–0.86) 0.75 (0.61–0.85) 6 0.373
 Similar features ML vs. LR 4 0.81 (0.75–0.86) 0.75 (0.61–0.85) 6 0.373
 Different features ML vs. LR 3 0.78 (0.76–0.80) 0.73 (0.62–0.82) 5 0.337
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Fig. 3 (A) Pooled c-statistic of the best performing ML (left) vs. LR/ risk scores (right) models for bleeding. (B) Pooled c-statistic of the best performing ML 
(left) vs. LR (right) models for AKI. (C) Pooled c-statistic of the best performing ML (left) vs. LR/ Cox proportional hazard (right) models for MACE
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trained using appropriate features that do not reduce the 
information [57]. The validation study by Shi et al. dem-
onstrated that the ML-based PRAISE score overestimated 
the risk of 1-year mortality, Bleeding, and recurrent acute 
myocardial infarction. Furthermore, the AUC for GRACE 
2.0 score was 0.81 compared to 0.75 for PRAISE [29].

Limitations
The current study has some limitations. Different ML 
studies have various methodologies which may lead to 
heterogeneity. To overcome this hurdle, we only com-
pared studies that provided both LR and ML models. In 
addition, when possible we provided secondary analysis 
of studies that used an analogous feature set for both ML 
and LR models. Additionally, For some outcomes like 
bleeding, only a limited number of articles provided the 
relevant data for meta-analysis which could lead to lower 
statistical power. Finally, we included only English arti-
cles which may introduce some publication bias to the 
current review. Nevertheless, it was the first study evalu-
ating ML investigations in PCI and we provided a critical 
review of the articles in addition to statistical analysis.

Conclusion
No statistical significance was observed between ML 
and LR models. Methodological assessment of the arti-
cles revealed concerns such as small sample size, lack of 
external validation, possible data leakage, and overfitting. 
While ML models may perform better with much larger 
datasets, there was the black-box nature of ML models 
may make the LR models more useful for clinical adap-
tion for now.

We recommend that future studies ensure clearer 
reporting of methodologies, adhere to PROBAST and 
CHARMS guidelines, employ nested cross-validation, 
achieve high values, utilize appropriate methods for han-
dling missing data (such as multiple imputation), and 
incorporate external validation cohorts. These steps will 
enable a more robust and reliable comparison between 
ML and LR models.
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