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Abstract
Background  Heart failure (HF) after acute myocardial infarction (AMI) is a leading cause of mortality and morbidity 
worldwide. Accurate prediction and early identification of HF severity are crucial for initiating preventive measures 
and optimizing treatment strategies. This study aimed to develop an interpretable artificial intelligence (AI) model for 
HF severity prediction using multidimensional clinical data.

Methods  This study included data from 1574 AMI patients, including medical history, clinical features, physiological 
parameters, laboratory test, coronary angiography and echocardiography results. Both deep learning (TabNet, Multi-
Layer Perceptron) and machine learning (Random Forest, XGboost) models were employed in constructing model. 
Additionally, the Shapley Additive Explanation (SHAP) method was used to elucidate clinical factors importance and 
enhance model interpretability. A web platform (​h​t​t​p​​s​:​/​​/​p​r​e​​d​i​​c​t​i​​o​n​-​​k​i​l​l​​i​p​​-​g​b​​y​.​s​​t​r​e​a​​m​l​​i​t​.​a​p​p​/) was also developed to 
facilitate clinical application.

Results  Among the models, TabNet demonstrated the best performance, achieving an AUROC of 0.827 for KILLIP 
four-class classification and 0.831 for KILLIP binary classification. Key clinical factors such as GRACE score, NT-pro BNP, 
and TIMI score were highly correlated with KILLIP classification, aligning with established clinical knowledge.

Conclusions  By leveraging easily accessible multidimensional data, this model enables accurate early prediction 
and personalized diagnosis of HF risk and severity following AMI. It supports early clinical intervention and improves 
patient outcomes, offering significant clinical application value.

Clinical trial number  Not applicable.
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Introduction
Acute myocardial infarction (AMI), commonly known as 
a heart attack, remains a leading cause of mortality and 
morbidity worldwide [1]. AMI often leads to the devel-
opment of heart failure (HF), a debilitating condition 
with high morbidity and mortality rates [2]. Early iden-
tification of patients at risk of developing HF after AMI 
is crucial for initiating preventive measures and optimiz-
ing treatment strategies. The Killip classification, a widely 
used bedside tool, assesses clinical signs of HF after 
AMI to stratify patients into different risk categories [3]. 
However, this classification relies on subjective assess-
ment and may not fully capture the complex interplay 
of factors contributing to HF development. Leveraging 
multidimensional data for HF severity prediction could 
enhance early identification of high-risk patients and 
guide timely clinical interventions.

In recent years, artificial intelligence (AI) methods, par-
ticularly deep learning models, have emerged as powerful 
tools for analyzing large and complex clinical datasets. 
These models can identify subtle patterns and generate 
highly accurate predictions, often surpassing traditional 
methods in precision [4–6]. In the context of AMI, deep 
learning can leverage diverse patient data (e.g., clini-
cal features, biomarkers, imaging data) to enhance out-
come prediction accuracy [6–9]. By capturing intricate 
relationships within the data, deep learning approaches, 
such as artificial neural networks, offer insights that con-
ventional statistical methods might overlook [10]. Train-
ing these models on large AMI cohorts allows them to 
uncover hidden patterns and interactions associated with 
HF risk [11]. Moreover, deep learning’s ability to handle 
high-dimensional data allows for the incorporation of a 
wide range of variables, potentially leading to more com-
prehensive and accurate risk prediction models.

While recent studies have shown promising results in 
using machine learning to predict HF after AMI [7, 12], 
few studies have focused on the specific task of predict-
ing HF combined in conjunction with Killip classifica-
tions. Such a focus could provide valuable insights into 
the early detection of HF after AMI and support per-
sonalized treatment strategies. Additionally, existing HF 
prediction models often lack interpretability, making it 
challenging to explain predictions and analyze feature 
importance. The recent introduction of TabNet [13], a 
deep learning algorithm specifically designed for tabular 
data, offers new possibilities for improving the perfor-
mance of clinical tabular data processing.

In this study, we utilized easily accessible multidimen-
sional data obtained during hospitalization-including 
medical history, clinical features, physiological param-
eters, and results from laboratory test, coronary angiog-
raphy combined with echocardiography. We leveraged 
both deep learning (TabNet, Multi-Layer Perceptron 

[14–16](MLP)) and machine learning models (Random 
Forest (RF) [17], XGboost [18]) to predict HF severity in 
patient after AMI, enabling accurate and personalized 
identification of HF severity. Additionally, we employed 
Shapley Additive Explanation [19] (SHAP) to elucidate 
risk factor importance and improve model interpretabil-
ity. We also developed a web platform to facilitate clinical 
application.

Method
Dataset
A retrospective study was conducted on 2993 patients 
diagnosed with type I AMI at Xuanwu Hospital, Capital 
Medical University, between January 2017 and Decem-
ber 2022. It was authorized by the Ethics Committee of 
Xuanwu Hospital, Capital Medical University with the 
approval document number (2022–129) and was pro-
cessed according to the principles of the Declaration of 
Helsinki. All enrolled patients signed informed consent 
forms.

We selected several factors that could potentially influ-
ence the development of heart failure in AMI patients. 
These factors included demographic characteristics such 
as age, sex, and body mass index (BMI); clinical scores 
like the GRACE and TIMI risk scores; and medical his-
tory, including hypertension, atrial fibrillation (AF), dia-
betes, hyperlipidemia, cerebrovascular disease (CVD), 
peptic ulcer (PU), previous myocardial infarction, stent 
implantation, and coronary artery bypass grafting 
(CABG). Smoking status was also considered, including 
whether patients had quit smoking. In addition, we ana-
lyzed post-admission blood test results, which included 
white blood cell count, neutrophils, lymphocytes, mono-
cytes, hemoglobin, platelet count, blood glucose, alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST), creatinine clearance rate (CCR), total cholesterol 
(TC), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), triglycerides 
(TG), uric acid (UA), hemoglobin A1c (HbA1c), high-
sensitivity C-reactive protein (hs-CRP), interleukin-6 
(IL-6), N-terminal pro-brain natriuretic peptide (NT-pro 
BNP), and peak troponin I (TNI). Echocardiographic 
indicators such as left ventricular ejection fraction 
(LVEF), left atrial diameter, and left ventricular end-dia-
stolic diameter (LVEDD) were also assessed. Addition-
ally, the length of hospitalization was recorded. Patients 
missing critical features such as NT-proBNP, LVEF, or 
GRACE/TIMI scores were excluded from the database, 
resulting in a final cohort of 1,574 patients.

Based on the Killip classification for HF in AMI, 
patients were categorized into four groups. This classi-
fication system is widely used in clinical cardiology and 
provides a rapid bedside assessment of HF severity. The 
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Killip class definitions used in this study were summa-
rized in Table 1.

Model construction and comparison
Both machine learning and deep learning models were 
applied to the AMI data. Considering the property 
of medical tabular data, the machine learning mod-
els included RF and XGBoost, while the deep learning 
models comprised a MLP and TabNet. The RF and MLP 
models were implemented using the Python scikit-learn 
package, XGBoost using the XGBoost package, and Tab-
Net using PyTorch library. The flow chart of the study 
design was shown in Fig. 1.

RF and XGBoost are commonly used tree-based 
machine learning models. MLP is a type of feedforward 
artificial neural network consisting of multiple layers of 
nodes, where each node is fully connected to the next 

Table 1  The Killip class definitions in AMI patients
Killip Class Clinical Description
Class 1 No clinical signs of heart failure
Class 2 Signs of mild to moderate HF (e.g., 

S3 gallop, rales < 50% lung field)
Class 3 Acute pulmonary edema (rales > 50% 

lung field, severe respiratory distress)
Class 4 Cardiogenic shock

Fig. 1  Flow chart of the study design
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layer, allowing for non-linear modeling of complex rela-
tionships. The Attentive Interpretable Tabular Learning 
(TabNet) model is a multi-stage deep learning model 
introduced by Google Cloud AI and applies a sequential 
instance-wise attention mechanism allowing it to inher-
ently select the most salient set of radiomic features at 
different decision steps within its architecture. TabNet 
specifically designed for tabular data, combining inter-
pretability with state-of-the-art performance through 
sequential attention mechanisms that decide which fea-
tures to utilize at each decision step.

A total of 41 features were utilized to develop the pre-
diction models. To build a standardized feature space 
across all models, continuous variables were normal-
ized using a standard scaler such that they have a mean 
of 0 and a variance of 1. Given the imbalance in KILLIP 
classes, we employed a stratified partitioning method 
to split the dataset into two subsets: a training dataset 
(80%) and a test dataset (20%). The distribution of KIL-
LIP classes in each subset was consistent with that in the 
original dataset. During training, to enhance the model’s 
ability to identify minority class samples, we applied the 
synthetic minority over-sampling technique (SMOTE) to 
interpolate the minority KILLIP classes (KILLIP 2, KIL-
LIP 3, KILLIP 4).

For each model, we employed a grid search approach 
for parameter tuning until the optimal parameter combi-
nation was identified. At each tuning step, fivefold cross-
validation was performed using stratified shuffles of the 
training dataset to estimate the parameters of each model 
and evaluate their predictive performance. To consider 
class imbalance and classification accuracy, with spe-
cific justification, the evaluation metrics included the 
area under the receiver operating characteristic curve 
(AUROC), the area under the precision-recall curve 
(AUPRC), precision, and F1 scores. For each compli-
cation, the model with the highest mean AUROC was 
selected as the best-performing model.

Model interpretation
Model predictions were interpreted using SHAP, a 
model-agnostic explanation technique. SHAP values for 
each feature were calculated to represent the contribu-
tion of each feature to the predicted risk of a complica-
tion. The SHAP method provided both global and local 
explanations. Global explanations offered consistent and 
accurate attribution values for each feature, demonstrat-
ing the relationships between input features and KILLIP 
classification. Local explanations provided insights into 
specific predictions for individual cases by inputting the 
corresponding data.

Results
Patient characteristics
A total of 1574 patients were identified during the study 
period. Among them, 1005 patients (63.8%) were clas-
sified as KILLIP 1, 468 patients (29.7%) as KILLIP 2, 72 
patients (4.6%) as KILLIP 3 and 29 patients (1.8%) as 
KILLIP 4. The demographic and clinical characteris-
tics across KILLIP classes are summarized in Table  2. 
The results indicated that compared to patients in KIL-
LIP class 1, those in KILLIP classes 2–4 were more likely 
to be female, older, and have a history of hypertension, 
diabetes, atrial fibrillation (AF), myocardial infarction, 
and stent placement. Additionally, these patients exhib-
ited higher GRACE and TIMI risk scores, elevated white 
blood cell, neutrophil, and monocyte counts, as well as 
increased levels of HbA1c, hs-CRP, IL-6, ALT, AST, UA, 
NT-pro BNP, left atrial diameter, and LVEDD. Con-
versely, patients in KILLIP classes 2–4 had lower CCR, 
LVEF, TC, TG, and hemoglobin levels. These findings 
demonstrate that female gender, advanced age, elevated 
inflammation markers, pre-existing cardiac conditions, 
diabetes, and renal dysfunction are significantly associ-
ated with an increased risk of HF following AMI. More-
over, relatively low levels of TC, TG, and hemoglobin 
were also found to contribute to the increased risk of HF 
after AMI.

Model performance
To gain a more comprehensive understanding and 
improve the prediction of HF severity following AMI, we 
employed machine learning models (RF and XGBoost) 
and deep learning models (TabNet and MLP) for two 
tasks: four-class classification (KILLIP 1, 2, 3, 4) and 
binary classification (KILLIP 1 vs. KILLIP 2, 3, 4). The 
discriminative performance results are presented in 
Tables 3 and 4, respectively, with ROC curves illustrated 
in Fig.  1. Performance metrics of different models for 
each KILLIP class in four-class classification and binary 
classification were presented in Appendix Tables  2, 3, 
4 and 5 and Appendix Tables 6, 7, 8 and 9, respectively. 
Appendix Table  10 shown the final hyperparameters of 
all the models.

As shown in Table 3; Fig. 2, among the models consid-
ered, the TabNet model achieved the highest predictive 
performance for KILLIP classification (four-class classifi-
cation) with an AUROC of 0.827, followed by the MLP 
model and the RF model. The XGBoost model demon-
strated the lowest performance. Overall, the deep learn-
ing models (MLP, TabNet) outperformed the machine 
learning models (RF, XGBoost).

Similarly, in the binary classification task (Table 4), the 
same trend was observed, with the TabNet model again 
delivering the best performance with an AUROC of 
0.831.
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Model interpretation
As demonstrated in the SHAP summary plots of the Tab-
Net model for four-class KILLIP classification (Fig.  3A 
and B), feature contributions were evaluated based on 
average SHAP values, presented in descending order. 
SHAP summary plots of other models were presented 
in Appendix Fig. 3 – Fig. 3. The GRACE and TIMI risk 

scores, NT-pro BNP, creatinine, and length of hospital-
ization had a negative impact on predicting “KILLIP 1,” 
indicating that higher values of these features decreased 
the likelihood of a patient being classified as KILLIP 1. 
Conversely, LVEF and CCR exhibited a positive effect, 
increasing the probability of KILLIP 1 classification.

Table 2  Comparison of demographic, clinical characteristics, and outcomes across KILLIP classes in the dataset
Variable Killip classification P value
Case number 1 (n = 1005) 2 (n = 468) 3 (n = 72) 4 (n = 29)
Sex, Male, n (%) 816(81.2) 356(76.1) 50(69.4) 22(75.9) 0.023
Age(year) 60.5 ± 12.3 68.1 ± 11.5 70.4 ± 10.4 65.4 ± 11.2 < 0.001
BMI, kg/m2 25.7 ± 3.6 25.5 ± 3.6 25.1 ± 3.5 24.5 ± 2.9 0.212
History of hypertension, n (%) 575(57.2) 309(66) 51(70.8) 15(51.7) 0.002
History of hyperlipidemia, n (%) 183(18.2) 63(13.5) 9(12.5) 2(6.9) 0.044
History of diabetes, n (%) 339(33.7) 219(46.8) 36(50) 14(48.3) < 0.001
History of AF, n (%) 28(2.8) 23(4.9) 36(50) 14(48.3) < 0.001
Old myocardial infarction, n (%) 101(10) 92(19.7) 3(4.2) 5(17.2) < 0.001
History of stent implantation, n (%) 105(10.4) 90(19.2) 13(18.1) 4(13.8) < 0.001
History of CABG, n (%) 9(0.9) 11(2.4) 1(1.4) 1(3.4) 0.121
History of smoking, n (%) 627(62.6) 256(54.7) 36(50) 15(51.7) 0.008
No quitting smoking, n (%) 511(50.8) 189(40.4) 23(31.9) 11(37.9) 0.034
History of CVD, n (%) 101(2.1) 1(5.9) 1(8.3) 2(22.2) 0.123
History of PU, n (%) 29(2.9) 11(2.6) 4(5.6) 0(0) 0.164
GRACE risk score 138.0 ± 29.0 170.1 ± 30.1 203.8 ± 35.8 231.5 ± 33.0 < 0.001
TIMI risk score 3.4 ± 1.7 5.3 ± 2.1 5.6 ± 2.2 6.1 ± 2.7 < 0.001
Blood glucose, mmol/L 6.8 ± 4.3 10.0 ± 47.4 8.6 ± 4.8 9.0 ± 4.3 0.177
HbA1c, % 6.5 ± 1.5 6.9 ± 1.7 7.1 ± 1.6 6.9 ± 1.8 < 0.001
Creatinine, umol/L 74.4 ± 20.3 88.8 ± 56.0 121.0 ± 54.9 114.9 ± 50.6 < 0.001
CCR, mL/min 90.1 ± 45.1 74.1 ± 72.7 51.7 ± 24.4 53.6 ± 26.5 < 0.001
TC, mmol/L 4.2 ± 1.0 4.1 ± 1.0 3.9 ± 1.4 3.9 ± 1.2 0.023
LDL-C, mmol/L 2.6 ± 0.8 2.7 ± 3.4 2.5 ± 1.1 2.2 ± 0.9 0.698
HDL-C, mmol/L 1.0 ± 0.3 1.0 ± 0.3 1.1 ± 0.3 1.1 ± 0.4 0.647
TG, mmol/L 1.9 ± 1.3 1.7 ± 1.0 1.5 ± 0.7 1.3 ± 0.6 < 0.001
UA, mmol/L 348.9 ± 94.1 363.0 ± 116.1 405.0 ± 158.7 416.8 ± 177.1 < 0.001
ALT, IU/L 43.8 ± 59.9 40.5 ± 35.2 70.8 ± 148.1 95.1 ± 123.0 < 0.001
AST, IU/L 95.1 ± 109.9 96.2 ± 122.8 119.4 ± 183.4 190.7 ± 338.1 < 0.001
Peak troponin I, ng/mL 15.5 ± 17.9 36.8 ± 331.1 15.8 ± 19.1 28.6 ± 19.4 0.211
NT-pro BNP, pg/mL 998.0 ± 2257.5 3550.4 ± 5890.4 10567.0 ± 9999.6 9448.9 ± 10009.3 < 0.001
hs-CRP, mg/L 10.9 ± 14.2 16.2 ± 17.0 28.4 ± 18.6 25.2 ± 19.0 < 0.001
IL-6, pg/mL 32.2 ± 82.1 49.3 ± 126.6 79.1 ± 117.3 1874.4 ± 9257.9 < 0.001
Leukocytes, n×103/µL 9.5 ± 3.1 9.9 ± 3.3 11.0 ± 4.5 12.9 ± 4.4 < 0.001
Neutrophils, n×103/µL 7.3 ± 3.6 7.7 ± 3.3 8.7 ± 4.3 10.6 ± 4.2 < 0.001
Lymphocytes, n×103/µL 1.7 ± 0.8 1.6 ± 0.8 1.5 ± 0.9 1.5 ± 0.8 0.006
Monocytes, n×103/µL 0.5 ± 0.2 0.6 ± 0.3 0.7 ± 0.4 0.7 ± 0.5 < 0.001
Platelet, n×103/µL 228.2 ± 63.2 226.7 ± 77.1 236.1 ± 103.1 247.6 ± 115.6 0.357
Hemoglobin, g/L 138.1 ± 17.0 132.7 ± 19.1 98.8 ± 20.8 121.6 ± 19.8 < 0.001
Left atrial diameter, mm 37.5 ± 4.7 38.6 ± 5.8 40.1 ± 5.9 39.6 ± 7.1 < 0.001
LVEDD, mm 51.5 ± 5.1 52.6 ± 6.0 56.8 ± 7.4 54.3 ± 7.0 < 0.001
LVEF, % 57.2 ± 9.0 52.7 ± 11.0 42.3 ± 12.7 41.7 ± 9.8 < 0.001
Length of hospitalization 8.5 ± 3.8 10.3 ± 7.3 15.7 ± 11.4 17.4 ± 13.2 < 0.001
BMI: body mass index; CABG: coronary artery bypass grafting; AF: atrial fibrillation; CVD: cerebrovascular disease; PU: peptic ulcer; GRACE: Global Registry of Acute 
Coronary Events; TIMI: Thrombolysis in Myocardial Infarction; TC: total cholesterol; LDL-C: low density lipoprotein cholesterol; HDL-C: high density lipoprotein 
cholesterol; TG: triglyceride; UA: uric acid; ALT: alanine aminotransferase; AST: aspartate aminotransferase; NT-pro BNP: N-terminal pro-B-type natriuretic peptide; 
hs-CRP: high-sensitivity C-reactive protein; IL-6: interleukin 6; LVEDD: left ventricular end-diastolic diameter; LVEF: left ventricular ejection fraction
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In addition, the SHAP dependence plot provides insight 
into how individual features influence model predictions. 
The relationship between actual values and SHAP values 
for these features is illustrated in Fig. 4, where SHAP val-
ues greater than zero correspond to a positive class pre-
diction, indicating a higher KILLIP grade. For example, 
patients with a GRACE score ≤ 150 or LVEF ≥ 48% had 
SHAP values above zero, pushing the model’s decision 
toward the “KILLIP 1” class. Similarly, low actual values 
of NT-pro BNP (≤ 2500) and TIMI scores (≤ 3) also con-
tributed to the prediction of KILLIP 1. For binary KILLIP 
classification, the corresponding SHAP summary plots 

for the TabNet model are provided in Appendix Figs.  4 
and 5.

Furthermore, local explanations analyzed how specific 
predictions were made for individual patients using per-
sonalized input data. The raw data for one patient is pre-
sented in Appendix Table 1. Figure 5A, B, C, and D depict 
predictions for a patient with KILLIP classifications 
1–4, respectively. For instance, Fig.  5A1–A4 shows this 
patient’s probabilities for KILLIP classes 1, 2, 3, and 4, as 
predicted by the TabNet model: 92.4% (Fig. 5A1), 0.07% 
(Fig. 5A2), 0.005% (Fig. 5A3), and 0.001% (Fig. 5A4). For 
this patient, factors such as GRACE risk score, LVEF, and 
CCR strongly influenced the prediction toward the “KIL-
LIP 1” class. Figure 6. Shown the force SHAP value plot 
for the test set. The corresponding SHAP local expla-
nations for binary KILLIP classification are shown in 
Appendix Table 1 and Appendix Figs. 6, 7 and 8.

Convenient application for clinical utility
As illustrated in Fig.  7, we have integrated the KILLIP 
prediction model into a web platform to improve its clin-
ical utility. By entering the actual values for all required 
features, the application can automatically predict the 
KILLIP classification for patients after AMI. The web 
platform is available online at ​h​t​t​p​​s​:​/​​/​p​r​e​​d​i​​c​t​i​​o​n​-​​k​i​l​l​​i​p​​-​g​
b​​y​.​s​​t​r​e​a​​m​l​​i​t​.​a​p​p​/.

Discussion
In this study, we employed four machine learning and 
deep learning algorithms to predict the risk of HF after 
AMI using multidimensional clinical data. These com-
putational methods are well-suited to managing complex 
and extensive datasets, making them highly effective for 
developing clinical prediction models. Their ability to 

Table 3  Performance of machine learning and deep learning 
models in predicting KILLIP class (four-class classification). 
Fivefold cross-validation was performed in all the 1574 patients

F1 Precision AUPRC AUROC
RF 0.786 ± 0.022 0.788 ± 0.009 0.674 ± 0.025 0.797 ± 0.012
XGboost 0.738 ± 0.023 0.761 ± 0.011 0.663 ± 0.027 0.783 ± 0.006
MLP 0.771 ± 0.022 0.775 ± 0.008 0.634 ± 0.028 0.814 ± 0.009
TabNet 0.783 ± 0.024 0.787 ± 0.012 0.684 ± 0.030 0.827 ± 0.005
Note: The values for all evaluation metrics are calculated using weighted 
averages. Results are presented as mean ± standard deviation across 5 stratified 
folds (random seed = 42)

Table 4  Performance of machine learning and deep learning 
models in predicting KILLIP class (binary classification). Fivefold 
cross-validation was performed in all the 1574 patients

F1 Precision AUPRC AUROC
RF 0.763 ± 0.014 0.758 ± 0.008 0.764 ± 0.018 0.804 ± 0.005
XGboost 0.768 ± 0.018 0.767 ± 0.008 0.782 ± 0.022 0.798 ± 0.004
MLP 0.781 ± 0.016 0.786 ± 0.012 0.773 ± 0.024 0.824 ± 0.006
TabNet 0.774 ± 0.013 0.762 ± 0.009 0.779 ± 0.022 0.831 ± 0.008
Note: The values for all evaluation metrics are calculated using weighted 
averages. Results are presented as mean ± standard deviation across 5 stratified 
folds (random seed = 42)

Fig. 2  ROC Curves of machine learning and deep learning models. Fivefold cross-validation was performed in all the 1574 patients. (A). ROC Curves 
for four-class KILIIP classification (B). ROC Curves for binary KILLIP classification
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handle diverse data types and identify intricate relation-
ships between variables allows for improved accuracy in 
clinical risk predictions. By integrating easily accessible 
multidimensional clinical data with advanced machine 
learning and deep learning algorithms, we have enhanced 
the potential of clinical prediction tools in identifying 
patients at risk for post-AMI HF.

Indeed, several established scoring systems such as the 
MAGGIC risk score, Framingham criteria, and ADHERE 
risk tree have been developed to predict the onset or 
outcomes of heart failure. However, these tools are typi-
cally designed for use in broader heart failure popula-
tions (including both de novo HF and chronic HF), rather 
than specifically for acute heart failure prediction in the 
context of acute myocardial infarction. In contrast, our 
study aimed to predict the severity of heart failure during 
hospitalization following AMI, using the Killip classifica-
tion as the outcome metric—a standard prognostic tool 
in AMI settings. While we did incorporate well-validated 
cardiovascular scores such as the GRACE and TIMI 
scores as input features, both of which have shown pre-
dictive value in post-AMI prognosis, including heart fail-
ure risk, we acknowledge the value of referencing other 
HF-specific risk tools for broader contextualization.

Among the models tested, the TabNet model achieved 
the highest AUROC value for KILLIP classification. Tab-
Net effectively combines the strengths of deep learning 
and tree-based models, employing a sequential attention 

mechanism to select crucial features at each decision 
step. Prior research has demonstrated the TabNet meth-
od’s excellent predictive value in medical contexts.

In medical data, the issue of class imbalance is com-
mon. To address this, we utilized the SMOTE over-sam-
pling method to generate synthetic samples similar to 
the original ones, thereby increasing data diversity and 
enhancing the model’s performance and generalizability. 
This approach better reflects real-world medical scenar-
ios and provides more reliable support for research and 
clinical decision-making.

While machine learning and deep learning models are 
often regarded as “black boxes”, their lack of interpret-
ability can be a challenge in clinical settings. To improve 
transparency, we applied the SHAP method, which offers 
both global and local explanations of model predictions. 
SHAP helps elucidates the model’s overall functionality 
and details how specific predictions are made for indi-
vidual patients. By highlighting key clinical variables con-
tributing to the risk of HF, SHAP visualizations can assist 
practitioners in identifying key factors early.

Our SHAP analysis revealed that higher GRACE risk 
score, TIMI risk score, age, and elevated levels of NT-pro 
BNP, creatinine, hs-CRP, and IL-6 were associated with 
an increased risk of HF after AMI. Conversely, higher 
CCR and LVEF were linked to a decreased risk. Although 
GRACE and TIMI scores were originally designed to 
predict mortality and recurrent myocardial infarction in 

Fig. 3  Feature importance by the SHAP method for the Tabnet model. (A) SHAP summary bar plot derived from 1574 patients. (B) SHAP summary dot 
plot for KILLIP 1 classification (1005 patients). The colors of the dots represent the actual feature values for each patient, with red indicating higher values 
and blue indicating lower values. Dots are stacked vertically to represent density
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acute coronary syndrome patients, they can also serve 
as indirect indicators of HF risk, as shown in previous 
studies [20, 21]. HF is a common complication follow-
ing AMI, especially in cases with significant myocardial 
damage or additional cardiovascular risk factors. Age, a 
well-established risk factor of HF, is likely related to age-
related changes in cardiac and vascular function [22, 23]. 
NT-pro BNP, a biomarker reflecting cardiac workload 
and function, is essential for diagnosing and prognosti-
cating HF [24]. Additionally, elevated levels of inflamma-
tory markers such as IL-6 and hs-CRP, have been linked 
to increased HF risk after AMI [25, 26]. Impaired kidney 
function, as indicated by elevated creatinine levels and 
decreased CCR, is closely related to HF development 
after AMI [27]. Finally, a decreased LVEF, which indicates 
impaired heart pumping function, is strongly associated 
with the development of HF and poor prognosis post-
AMI. In summary, monitoring these factors is essential 

for early identification of high-risk patients and timely 
intervention to improve outcomes. However, it is critical 
to acknowledge that SHAP is a post hoc interpretability 
method. Its values reflect feature importance within the 
model’s decision-making framework rather than genuine 
causal relationships or clinical pathophysiological mech-
anisms [28, 29].

KILLIP grading is traditionally based on changes in 
blood pressure and lung auscultation during AMI hos-
pitalization. However, our study incorporated multidi-
mensional clinical indicators into a predictive model, 
providing a more accurate assessment of HF risk than 
the KILLIP grading alone. The development of predictive 
models like ours enhances the comprehensive clinical 
thinking of cardiovascular physicians. To further facili-
tate clinical use, we are making the predictive models 
accessible through a web platform, aiming to promote 
widespread clinical application and adoption.

Fig. 4  Global model explanation by the SHAP method for the TabNet model. SHAP dependence plot for KILLIP 1 classification (1005 patients). Each dot 
represents a patient and shows how a single feature affects the model’s output. SHAP values greater than zero push the decision toward the “KILLIP 1” class
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Fig. 5  Local model explanation by the SHAP method for the TabNet model. (A1–D1, A2-D2, A3-D3, A4-D4) represent prediction result plots for ran-
domly selected patients from each KILLIP class 1 through 4. The raw data for each patient is presented in Appendix Table 1

 

Fig. 6  Force SHAP value plot for the test set (315 patients). Each patient is represented along the x-axis, while the contributions of features are shown on 
the y-axis. A larger red area for an individual patient indicates a higher probability of the prediction being classified as “KILLIP 1.”
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Fig. 7  The web platform for KILLIP classification prediction model
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There are several limitations to this study. First, the data 
were derived from a single-center dataset, and external 
validation with multi-center data is lacking. Second, the 
reliance on SHAP for interpretability introduces meth-
odological constraints. As a post hoc explanation tool, 
SHAP values do not establish causality and may prioritize 
variables that are statistically predictive within the model 
rather than clinically actionable targets. This could lead 
to over-reliance on model-derived associations without 
rigorous biological validation. Third, the data modalities 
included in the study were somewhat limited. Specifi-
cally, our analysis focused primarily on structured clini-
cal variables (e.g., laboratory biomarkers, risk scores, and 
demographic features), while omitting unstructured data 
modalities such as imaging data, longitudinal follow-up 
records, and genomic or proteomic biomarkers. This may 
restrict the model’s ability to capture subtle pathophysi-
ological interactions that could further refine HF risk 
stratification. Future research will focus on expanding the 
dataset by collecting more comprehensive clinical data 
from AMI patients across multiple institutions to refine 
and improve the accuracy of the prediction model.

Conclusion
By harnessing the power of artificial intelligence, we have 
developed a KILLIP classification prediction model to 
assess the risk of HF after AMI. This model enhances risk 
stratification, optimizes treatment strategies, guides early 
clinical interventions, reduces the incidence of post-AMI 
heart failure, and improves patient outcomes, demon-
strating significant clinical utility. Its clinical utility is 
further demonstrated through its integration into a user-
friendly web platform, accessible to both remote and local 
healthcare settings. The platform’s visual design frame-
work ensures that the predictive tool is both practical and 
actionable across a range of clinical environments.
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