From: Semi-supervised segmentation of cardiac chambers from LGE-CMR using feature consistency awareness
Method | Scans used | Dice(%) | Jaccard(%) | 95HD(voxel) | ASD(voxel) | |
---|---|---|---|---|---|---|
Labeled | Unlabeled | |||||
V-Neta | 8 | 0 | 78.57 | 66.96 | 21.20 | 6.07 |
V-Neta | 16 | 0 | 86.03 | 76.06 | 14.26 | 3.51 |
V-Neta | 80 | 0 | 91.14 | 83.82 | 5.75 | 1.52 |
UA-MT [38] | 8(10%) | 72 | 84.25 | 73.48 | 13.84 | 3.36 |
SASSNet [55] | 8(10%) | 72 | 87.32b | 77.72b | 9.62b | 2.55b |
LG-ER-MT [56] | 8(10%) | 72 | 85.54b | 75.12b | 13.29b | 3.77b |
DTC [36] | 8(10%) | 72 | 87.51 | 78.17 | 8.23 | 2.36 |
Ours | 8(10%) | 72 | 88.34 | 79.30 | 7.92 | 2.02 |
UA-MT [38] | 16(20%) | 64 | 88.88b | 80.21b | 7.32 | 2.26b |
SASSNet [55] | 16(20%) | 64 | 89.54b | 81.24b | 8.24 | 2.20b |
LG-ER-MT [56] | 16(20%) | 64 | 89.62b | 81.31b | 7.16 | 2.06b |
DTC [36] | 16(20%) | 64 | 89.42b | 80.98b | 7.32b | 2.10b |
Ours | 16(20%) | 64 | 90.70 | 83.09 | 6.41 | 1.72 |