Skip to main content

Table 3 The characteristics of AI prediction models

From: Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review

First author and year

Algorithm/model

NO. of variables

Outcome(s)

Mode of validation

Missing data strategy

Best performing algorithm (Corresponding AUC)

Crowe 2013 [27]

LR

8

30-day mortality

Train/test

Record exclusion

LR (0.81)

Zapata-Impata 2015 [28]

PSO + KNN

Combination A: 33

Combination A: 83

RACHS classification

Train / Test

NP

PSO + KNN (NP)

Moein 2015 [29]

RF

1089

Post-operative poor outcomes: Morbidity (need for ECMO, pLOS, etc.) and Mortality

Train /Test / Validation (SwB)

NP

RF with 400 trees + clinical features (0.743)

Ruiz-Fernández 2015 [30]

MLP, SOM, RBF, DT

87

RACHS classification

10-CV

Single imputation

MLP (0.999)

Rogers 2017 [31]

LR

11

30-day mortality

5-CV + EV

Record exclusion

LR (0.86)

Jalali 2018 [32]

SVM

using 3 ranking methods:

(1) mutual information

(2) mutual information modified with reliability index

(3) mutual information with reliability index and considering mutual information of a set

HLHS: 14

non-HLHS: 11

Periventricular leukomalacia

K-fold cross validation

NP

SVM + 3rd ranking system (NP)

Luis Ahumadal 2018 [33]

NN, RF

26

One-Year Transplant-Free Survival (Norwood Procedure)

5-CV

Multiple imputation

NN (0.94)

Samad 2018 [34]

LSVM

24 (total): a: 6

b: 6

c: 5

d: 10

a) Major vs No DVSF

b) Major or Minor vs No DVSF

c) Major vs Minor vs No DVSF

d) Major vs Minor or No DVSF

5-CV

NP

LSVM: a: 0.87

b: 0.82

c: 0.7

d: 0.77

Ruiz 2019 [35]

C-WIN + NB

34

Critical events: CPR, UETI, and ECMO in infants with SVP before second-stage surgery

10-CV

Single imputation

C-WIN + NB (0.88)

Cocomello 2020 [36]

LR

11

30-day mortality

EV

Record exclusion

LR (1st cohort = 0.72; 2nd cohort = 0.88)

Chang Junior 2020 [37]

MLP, RF, ET, SGB, ABC, BDT

MLP, BDT: 84; RF, SGB, ET, ABC: 42

In-hospital /30-day mortality

10-CV

NP

BDT (0. 926)

Huang 2020 [38]

LR, NB, RF, LDA, SVM, KNN

7

Mean pulmonary arterial pressure > 15 mmHg

Train / Test

NP

RF (0.79)

Bender 2021 [39]

SVM + Genetic Algorithm (the optimization technique)

53

Periventricular leukomalacia

Train / Test

NP

SVM (1)

Bertsimas 2021 [40]

LR, OCT, RF, GB

13

In-hospital /30-day mortality

pMVST

pLOS

Train / Test

NP

Mortality: GB (0.874)

pMVST: GB (0.856)

pLOS: RF (0. 821)

Faerber 2021 [41]

GB: two-stage with and without a MARS

without MARS: 56

with MARS: 21

Postoperative cardiac complications

10-CV

Multiple imputations

GB (0.71)

Rusin 2021 [42]

LR

7

Cardiorespiratory deterioration events1

Train / Test

NP

LR (0.958)

Ng 2022 [43]

A deep learning based perioperative parameter classifier composed of CNN + RBF + fusion strategy

NA

- Length of ICU stay (LICUS)

- Perioperative complications (PC)

Train /Test / Validation(SwB)

NP

LICUS: All components (0.73)

PC: All components (0.72)

Zeng 2021 [44]

XGBoost, LR

45

- Prediction of postoperative complications

- Classification of postoperative complications

5-CV

Multivariate imputation

Prediction: XGBoost (0.839)

Classification: XGBoost (0.85)

Thiriveedi 2021 [45]

XGBoost: STS model

-Biomarker model

-Clinical model

-STS model: NP

-Biomarker model: 4

-Clinical model: NP

Readmission following 30 days post operation

NP

NP

XGBoost: clinical model (0.997)

Jalali 2021 [46]

LR, RF, DT, GB, DNN

25 (1-year mortality)

49 (pLOS)

- 1-year mortality/need for cardiac transplant

- Prolonged length of hospital stay (pLOS)

5-CV

Multiple imputation

1-year mortality: DNN (0.95)

pLOS: DNN (0.94)

Bertsimas 2022 [47]

OCT

12

- Mortality: In-hospital /30-day mortality

- pMVST

- pLOS

Train / Test

NP

OCT: Mortality: 0.872

OCT: pMVST: 0.814

OCT: pLOS: 0.813

Du 2022 [48]

XGBoost

59

In-hospital mortality

Train /Test / Validation(SwB)

NP

XGBoost (0.874)

Ekhomu 2022 [49]

GB

NP

- Postoperative peak RA strain

- Postoperative systolic RA strain rate

- Postoperative early diastolic RA strain rate

- Postoperative RV global longitudinal strain

3-CV

Multiple imputations

GB (NP)

Shi 2022 [50]

LR, SVM, MLP, XGBoost, AB

15

Malnutrition, defined as underweight: weight below −2 z-scores

K-fold CV + EV

Categorical: mode

Continuous: multiple imputations

XGBoost (0.842)

Pei 2022 [51]

Deep learning framework:

1. Segmentation and 3D modeling of LA and PV using V-net (CNN)

2. Computation of morphological features from LA and PV

3. Determination of Risk Factors

4. Risk Prediction Model by Morphological Features of LA and PV

29

Postoperative Pulmonary Vein Obstruction

3-CV + EV

NP

CNN (0.870)

Sunthankar 2023 [52]

LR, RF, XGBoost, GBDT, LightGBM

180

Interstage mortality between stage I and II surgery while at home

5-CV

Single imputation

Light gradient boosting machine (0.642)

Betts 2023 [53]

GBDT, ANN, LR

NP

30-day mortality

5-CV + EV

No missing data

Gradient boosting trees (0.87)

Zürn 2023 [54]

LR

5

30-day mortality

Leave-one-out CV + EV

Simple imputation

LR (0.9486)

Jiwani 2023 [55]

CNN

NP

In-hospital mortality

K-fold CV

NP

CNN (NP)

Kong 2023 [56]

LR, NB, XGBoost, SVM, LightGBM, MLP

16

Acute kidney injury

Train / Test / Validation

(SwB)

NP

XGBoost (0.878)

Sarris 2024 [57]

Decision trees

12

In-hospital mortality, pMVST, pLOS

Train / Test

NP

DT (Mortality: 0.866, pMVST: 0.851, pLOS: 0.818)

Chang junior 2024 [58]

Catboost, RF, GB, NB, XGBoost, SVM, LightGBM. LR, DT, KNN, AB, LDA, ET, ridge, QDA

93

ICU length of stay

10-CV

No missing data

Catboost (0.8559)

Li 2024 [59]

LR, KNN

NP

Postoperative complications

Mechanical ventilation duration

Train/ test

NP

LR + KNN (0.810)

Smith 2024 [60]

NP

45 to 195 (in different models)

Transplant-free survival

5-CV

Missing forest

NP

Tong 2024 [61]

LightGBM, LR, SVM, RF, CatBoost

39

LCOS, Pneumonia, Renal failure, Deep venous thrombosis

Train/ Test

Record exclusion

LCOS: LightGBM (0.893)

Pneumonia: LR (0.929)

Renal failure: LightGBM (0.963)

DVT: LR (0.942)

  1. Abbreviations: 1: defined as either a cardiac arrest requiring CPR (cardiac deterioration) or an unplanned intubation (respiratory deterioration)
  2. ECMO Extracorporeal membrane oxygenation, PSO Particle swarm optimization, KNN k-nearest neighbors, RF Random Forest, MLP Multilayer Perceptron, SOM Self-organizing map, RBF Radial Basis Function, DT Decision Tree, 3-CV threefold cross-validation, 5-CV fivefold cross-validation, 10-CV tenfold cross-validation, EV External validation, LightGBM Light gradient boosting machine, GBDT Gradient Boosting Decision Trees, SVM Support vector machine, CNN Convolutional neural network, NN Neural network, LSVM Linear support vector machine, DVSF Deterioration of ventricular size and function, C-WIN Cardiac intensive-care Warning INdex, NB Naive Bayes, CPR Cardiopulmonary resuscitation, UETI Unplanned Endotracheal Intubation, SVP Single-ventricle physiology, ET Extra Trees, SGB Stochastic Gradient Boosting, ABC Ada Boost Classification, BDT Bag Decision Trees, LR Logistic regression, LDA Linear discriminant analysis, OCT Optimal classification trees, GB Gradient boosting, MARS Multivariate adaptive regression spline model, XGBoost Extreme gradient boosting, STS Society of Thoracic Surgeons, DNN Deep neural networ, AB Adaptive boosting, SwB Split with bootstrapping, QDA Quadratic discriminant analysis, DVT Deep venous thrombosis, LCOS Low cardiac output syndrome, pMVST prolonged mechanical ventilatory support time, pLOS prolonged length of hospital stay, RACHS risk adjustment for congenital heart surgery