Skip to main content

Table 3 Individual classifier results were evaluated

From: Optimizing heart disease diagnosis with advanced machine learning models: a comparison of predictive performance

S.No

Models

Accuracy

Precision

Recall

F1Score

1

Logistic Regression

0.83

0.84

0.78

0.81

2

Random Forest

0.91

0.92

0.90

0.91

3

SVM Regression

0.83

0.84

0.79

0.82

4

KNN

0.91

0.91

0.91

0.91

5

GBM

0.87

0.87

0.86

0.86

6

Neural Network

0.84

0.85

0.80

0.82

7

XGBoost

0.93

0.92

0.92

0.92

8

MANN

0.84

0.86

0.79

0.82

9

FDA

0.84

0.85

0.82

0.83

10

CIT

0.81

0.78

0.82

0.80

11

Bagged tree

0.93

0.93

0.92

0.93

12

Navi Bayes

0.85

0.87

0.80

0.83

13

MARS

0.84

0.85

0.82

0.83

14

BGLM

0.83

0.84

0.80

0.82

15

BGGLM

0.83

0.84

0.79

0.82