S.No | Models | Accuracy | Precision | Recall | F1Score |
---|---|---|---|---|---|
1 | Logistic Regression | 0.83 | 0.84 | 0.78 | 0.81 |
2 | Random Forest | 0.91 | 0.92 | 0.90 | 0.91 |
3 | SVM Regression | 0.83 | 0.84 | 0.79 | 0.82 |
4 | KNN | 0.91 | 0.91 | 0.91 | 0.91 |
5 | GBM | 0.87 | 0.87 | 0.86 | 0.86 |
6 | Neural Network | 0.84 | 0.85 | 0.80 | 0.82 |
7 | XGBoost | 0.93 | 0.92 | 0.92 | 0.92 |
8 | MANN | 0.84 | 0.86 | 0.79 | 0.82 |
9 | FDA | 0.84 | 0.85 | 0.82 | 0.83 |
10 | CIT | 0.81 | 0.78 | 0.82 | 0.80 |
11 | Bagged tree | 0.93 | 0.93 | 0.92 | 0.93 |
12 | Navi Bayes | 0.85 | 0.87 | 0.80 | 0.83 |
13 | MARS | 0.84 | 0.85 | 0.82 | 0.83 |
14 | BGLM | 0.83 | 0.84 | 0.80 | 0.82 |
15 | BGGLM | 0.83 | 0.84 | 0.79 | 0.82 |