From: Optimized deep residual networks for early detection of myocardial infarction from ECG signals
Datasets | Variations | Metrics | MSMIDM | SVM-GOA | CNN | kNN | Deep NN | ML-ResNet | hybrid ResNet-ViT model | Proposed SSS-DRN |
---|---|---|---|---|---|---|---|---|---|---|
Dataset 1 | k-value | Testing Accuracy | 0.775 | 0.787 | 0.808 | 0.829 | 0.854 | 0.878 | 0.883 | 0.901 |
Sensitivity | 0.784 | 0.796 | 0.816 | 0.836 | 0.859 | 0.879 | 0.887 | 0.905 | ||
Specificity | 0.786 | 0.798 | 0.819 | 0.841 | 0.866 | 0.882 | 0.889 | 0.907 | ||
Learning set | Testing Accuracy | 0.788 | 0.800 | 0.821 | 0.843 | 0.870 | 0.896 | 0.898 | 0.916 | |
Sensitivity | 0.792 | 0.804 | 0.825 | 0.845 | 0.875 | 0.893 | 0.903 | 0.921 | ||
Specificity | 0.793 | 0.805 | 0.826 | 0.854 | 0.880 | 0.896 | 0.908 | 0.926 | ||
Dataset 2 | k-value | Testing Accuracy | 0.768 | 0.780 | 0.800 | 0.820 | 0.846 | 0.870 | 0.874 | 0.892 |
Sensitivity | 0.776 | 0.788 | 0.808 | 0.827 | 0.850 | 0.870 | 0.878 | 0.896 | ||
Specificity | 0.778 | 0.790 | 0.810 | 0.832 | 0.857 | 0.873 | 0.880 | 0.898 | ||
Learning set | Testing Accuracy | 0.780 | 0.792 | 0.813 | 0.835 | 0.861 | 0.887 | 0.889 | 0.907 | |
Sensitivity | 0.784 | 0.796 | 0.817 | 0.837 | 0.867 | 0.884 | 0.894 | 0.912 | ||
Specificity | 0.785 | 0.797 | 0.818 | 0.846 | 0.871 | 0.887 | 0.898 | 0.917 |