Skip to main content

Table 1 Comparative discussion

From: Optimized deep residual networks for early detection of myocardial infarction from ECG signals

Datasets

Variations

Metrics

MSMIDM

SVM-GOA

CNN

kNN

Deep NN

ML-ResNet

hybrid ResNet-ViT model

Proposed SSS-DRN

Dataset 1

k-value

Testing Accuracy

0.775

0.787

0.808

0.829

0.854

0.878

0.883

0.901

Sensitivity

0.784

0.796

0.816

0.836

0.859

0.879

0.887

0.905

Specificity

0.786

0.798

0.819

0.841

0.866

0.882

0.889

0.907

Learning set

Testing Accuracy

0.788

0.800

0.821

0.843

0.870

0.896

0.898

0.916

Sensitivity

0.792

0.804

0.825

0.845

0.875

0.893

0.903

0.921

Specificity

0.793

0.805

0.826

0.854

0.880

0.896

0.908

0.926

Dataset 2

k-value

Testing Accuracy

0.768

0.780

0.800

0.820

0.846

0.870

0.874

0.892

Sensitivity

0.776

0.788

0.808

0.827

0.850

0.870

0.878

0.896

Specificity

0.778

0.790

0.810

0.832

0.857

0.873

0.880

0.898

Learning set

Testing Accuracy

0.780

0.792

0.813

0.835

0.861

0.887

0.889

0.907

Sensitivity

0.784

0.796

0.817

0.837

0.867

0.884

0.894

0.912

Specificity

0.785

0.797

0.818

0.846

0.871

0.887

0.898

0.917